
CS 434 Spring 2006

An Intermediate Form for C◦ Programs

This document describes the intermediate representation that your compilers will use for C◦ programs.
The scheme we will use is based on the idea of syntax trees. Therefore, much of this document will
be concerned with the structure of trees for C◦ programs. Syntax trees typically include some pointers
into the compiler’s symbol table. Accordingly, this document also includes a partial specification of a
symbol table organization for a C◦ compiler. In fact, since the syntax trees depend upon the symbol
table, we will begin with a summary of the organization of the symbol table.

1 Symbol Table Organization Overview

The symbol table maintained by your compiler will consist of two main components. The first is a
collection of dynamically allocated structures containing one element for each distinct identifier used in
the program. We will refer to this collection of structures as the identifier table and to its elements as
identifier descriptors. Each of these elements will contain a pointer to the character string representation
of the identifier with which it is associated and several other link fields. This table will be created by
the scanner.

The second component is a collection of dynamically allocated structures including one element for
each distinct declaration or definition in the program. We will refer to this collection of structures as the
declaration table and its elements as declaration descriptors. These entries will be created and initialized
by the semantic processing phase of your compiler. Each of these elements will include a pointer to the
identifier descriptor for the identifier with which it is associated; attribute fields describing important
characteristics of this declaration of the identifier (such as whether it is a function, a type or a variable);
and several additional link fields.

In the syntax trees produced as output of the syntactic analysis phase, identifiers will be represented
by pointers to their identifier descriptors. During the semantic processing phase, references to identifiers
within the syntax tree will be modified so that references to identifier descriptors are either replaced by
or augmented with references to declaration descriptors.

The construction of the symbol table will depend on two hash tables. The first of these hash tables
is used by the scanner to locate the appropriate identifier descriptors as it encounters identifiers in the
source program. You will not be concerned with the details of this hash table (I will provide you with
the object code of a scanner including the hash table).

The second hash table is used to locate the declaration descriptors for structure component names.
Given a component name and a pointer to the declaration descriptor for a structure type, this table
will enable one to locate the declaration descriptor for the named component of the type if the named
component is indeed a component of the specified structure type. This search structure will be created
and maintained by the semantic processing phase of your compiler.

The format of the structures used to hold identifier and declaration descriptors is discussed below,
after the specification of the syntax trees for C◦.

2 Syntax Tree Organization

As discussed in class, there is a significant difference between the internal nodes of a syntax tree and
its leaves. Within an internal node, one finds a phrase type and pointers to sub-trees. The leaves, on

1

CS 434 Spring 2006

the other hand, hold information about identifiers and constants. In fact, in class I have suggested that
rather than actually having separate nodes for the leaves, one could use symbol table entries for leaf
nodes.

We will not actually do this in the compilers you build. The reason is a simple, practical one. To
generate good error messages, one needs to keep information about where in the source program the
text that corresponds to each sub-tree of the syntax tree can be found. We will do this by storing in
each node the line number on which the first token that belonged to the phrase the node represents
was found. This can not be done for identifiers if all occurrences of an identifier are represented by a
single symbol table entry. So, we instead represent identifiers by nodes that contain the line number on
which they were found and a pointer to the appropriate symbol table entry. Similar nodes will be used
for constants.

As part of semantic processing, you will rewrite the trees that the parser produces for variable
references. Basically, while the parser creates trees based on the syntactic structure of the source
code, the code generator would prefer trees corresponding closely to the capabilities of the underlying
hardware. Variable references, particularly subscripted variables and component selections, can be
reconstructed by the semantic processing routines so that they explicitly describe much of the addressing
arithmetic required by the variable references they represent.

Two special node types are used to support this translation of variable reference subtrees. The first
is an internal node type used to represent the root of a variable reference subtree. These nodes will
each hold a single pointer to the subtree that describes the variable reference. The other is a node type
used to represent references to pointers to function activation records. Such nodes do not appear in the
trees produced by the parser but are needed to translate variable reference subtrees into a form that
explicitly describes the required address arithmetic. These nodes will always appear as leaves in the
tree.

2.1 Representing Syntax Tree Nodes

This leads to a syntax tree with five distinct node types. As a result, to specify the general “type” of
a syntax tree node, we use the C union type node described below.1

/* Union type that combines the 5 structure types used to describe */

/* tree nodes */

typedef union nodeunion {
struct unknode unk;

struct internalnode internal;

struct identnode ident;

struct constnode constant;

struct displaynode display;

struct refvarnode var;

} node;

Each of the five node types present in the tree include two common fields: the field specifying the
node’s phrase type2 (type) and the field specifying the line of the source code on which the first token
of the phrase represented by the node’s subtree occurred (line). The type unknode, whose definition
is shown below, allows one to reference these fields in situations where the actual type of the node is not
yet known. For example, if ‘root’ is a pointer to a node of unknown type one can use the expression:

root->unk.type

1The C type declarations shown in this handout will all be made available in ‘.h’ files on the Dells.
2Node phrase types are specificed using an enumeration type named ‘nodetype’. The elements of this type and the

details of nodes of each phrase type are described below.

2

CS 434 Spring 2006

/* The type ’unknode’ provides a template that can be used to */

/* access the common components found in all node types when */

/* the actual type of the node is unknown. */

struct unknode {
nodetype type;

int line;

};

to determine its phrase type. One could also use the expression ‘root->internal.type’ or ‘root->ident.type’,
but these expressions mis-leadingly suggest that the type of the node is already known. The type
unknode is provided to support clear coding.

The structure type internalnode describes the nodes used to represent almost all of the internal
nodes of the tree. In addition to the common type and line components found in all nodes, a node

/* Tree nodes of type ’internal’ are used for all nodes that */

/* are internal to the tree produced by the parser except */

/* for the roots of variable reference subtrees. */

struct internalnode {
nodetype type;

int line;

union nodeunion *child[MAXKIDS]; /* pointers to the node’s sub-trees */

};

of this type includes a component child which is an array of pointers to its children. The number
of children of a given node can be determined from its node type. The syntactic analysis routines I
will provide conserve memory by only allocating space for the child pointers actually used by a given
internal node. Thus, if a node should only have 2 children, its third child pointer should not be used
for any purpose.

The structure types identnode and constnode are used to represent the leaves of the syntax trees
produced by the parser. Declarations of the structure types are shown below:

/* Nodes of type ’ident’ are used for leaf nodes corresponding */

/* to identifiers in the source code. The value in the */

/* ’type’ component of such a node will always be ’Nident’. */

struct identnode {
nodetype type;

int line;

identdesc *ident; /* Pointer to associated identifier descriptor */

decldesc *decl; /* Pointer to associated declaration descriptor */

};

/* Nodes of type ’constant’ are used for leaf nodes corresponding */

/* to constants in the source code. The value in the ’type’ */

/* component of such a node will always be ’Nconst’. */

struct constnode {
nodetype type;

int line;

int value; /* Integer value of the constant */

int ischar; /* True if this was a character constant */

};

3

CS 434 Spring 2006

Identifiers are represented by nodes of type identnode. The type component of such nodes will
always be Nident. The ident and decl components of an identnode are pointers to the appropriate
identifier descriptor and declaration descriptor for the identifier being referenced. The decl components
of identnode nodes are set to NULL (the value 0) by the syntactic analyzer. During semantic analysis,
the correct values should be stored in these fields.

There is one special group of identnodes produced by the syntactic analyzer. These are identnodes
for the keyword integer. Technically, integer is a keyword rather than an identifier in C◦. Treating it
as an identifier that has been declared as a type, however, will simplify various parts of the compiler.
Accordingly, occurrences of integer will be represented by special identnodes in the syntax tree.

Each constnode contains two fields beyond the common type and line fields. One is named value.
It holds the integer value of the constant. The second is a field named ischar which is used as a boolean
flag indicating whether the constant found in the source code was a character or an integer. The type

component of all such nodes will be Nconst.
There are two additional node types related to subtrees representing references to variables. Their

declarations are shown in figures 1 and 2. Tree nodes of type displaynode are used to refer to the
address of a function’s stack frame. Other than the standard type and line fields, the only member

/* Nodes of type ’display’ are used for leaf nodes corresponding */

/* to points where the address of the activation record of a */

/* function is needed. Such nodes are not included in the tree */

/* produced by the parser. They are inserted during semantic */

/* processing. */

struct displaynode {
nodetype type;

int line;

int level; /* The nesting level of the function whose activation record

address should be used. */

};

Figure 1: The type displaynode

of a display reference node is a level field use to store the nesting level of the function whose frame
address is to be used.

Finally, nodes of type refvarnode are used to designate places where a value should be loaded from
a calculated memory address. The baseaddr field of a refvarnode points to a subtree that describes
the computation of the base address. The value of the displacement field gives a constant value to
be added to the base address before accessing memory. This field is initialized to 0 in trees created
by the parser. The vardesc field is intended to point to a declaration descriptor for the variable
referenced. This field is set to NULL by the parser. As the semantic processor translates variable
reference subtrees into a form that more explicitly describes addressing arithmetic, it should set each
refvarnode’s vardesc field to point to the appropriate declaration descriptor.

2.2 Node Phrase Types

As mentioned above, the phrase types Nident and Nconst are used to label nodes representing the
leaves of the syntax tree. The phrase types Nrefvar and Ndisplay are used to identify the two special
node types used to encode variable reference subtrees. All of the other node phrase names defined in
the enumeration type nodetype are used to label internal nodes. All of these other node phrase names
are listed and described below.

4

CS 434 Spring 2006

/* Refvar nodes are included by the parser as the roots of all */

/* variable reference subtrees. When created by the parser, the */

/* "baseaddr" field will either point to an Nselect, Nsubs or */

/* Nident node. During semantic analysis the "baseaddr" subtree */

/* will be converted into a subtree describing the calculation of */

/* the memory address for the variable. A "displacement" field is */

/* included to hold a constant offset from the base address to the */

/* variable. Finally, to preserve information about the symbolic */

/* variable being used, the semantic analyzer should set the */

/* "vardesc" field to point to the declaration descriptor of the */

/* variable being used. */

struct refvarnode {
nodetype type;

int line;

union nodeunion

* baseaddr; /* Subtree describing base address calculation */

int displacement; /* Displacement to variable relative to base addr */

decldesc *vardesc; /* Declaration descriptor for referenced variable */

};

Figure 2: The refvarnode type

There are several important subgroups of node phrase types. One important group is the group
of “list” phrases including Nstmtlist, Ntypelist, Nvarlist and all of the other phrase types whose
names end with “list”. These nodes are used to represent lists of items in the program. In all cases,
such nodes take 2 children. The left child (child[0]) of a list node points to the first element of the
list (i.e. a statement, type definition, variable definition or whatever element type is appropriate). The
right child (child[1]) points to the remainder of the list. Its value is either NULL (= 0) or a pointer
to another list node of the same type.

Other important groups of phrase types include the statement phrase types (Nasgn, Ncall, Nretn,
Nif and Nwhile) the variable phrase types (Nident, Nselect, and Nsubs) and the expression phrase
types (which includes the Nrefvar phrase type in addition to all the “unaries” and “binaries” mentioned
in the table below).

All of the phrase names used in internal tree nodes are described in the list below. This list is
organized so that node labels for phrase types occur in roughly the same order as the corresponding
rules of the C◦ grammar in the Revised Report on the C◦ Programming Language handout.

5

CS 434 Spring 2006

Node Num. of
Type Children Description

Nprogram 2 Represents an entire program. Child[0] is a (possibly NULL) list
of Ntypelist nodes. Child[1] is an Nbody sub-tree.

Nbody 3 Represents the body of a program or function. Child[0] is a (pos-
sibly NULL) list of Nvarlist nodes. Child[1] is a (possibly NULL)
list of Nfunclist nodes. Child[2] is a list of Nstmtlist nodes.

Ntypelist 2 List header used to build lists of Ntypedefn nodes.
Ntypedefn 2 Used to represent a single type definition. Child[0] will be an

Nident node for the name of the type. Child[1] will be an Narray
or Nstruct node describing the type itself.

Narray 2 Represents an array type specification. Child[0] is an Nconst
specifying the array’s size. Child[1] is an Nident node for the
type name specified for the elements of the array.

Nstruct 1 Represents a struct specification. Child[0] is a Nfieldlist contain-
ing the field specifications for all the components of the structure.

Nfieldlist 2 Used to represent lists of structure field specifications. Child[0]
will be an Ndecl.

Ndecl 2 Used to represent variable declarations and structure field speci-
fications. Both children should be of type Nident. Child[0] is the
identifier being declared. Child[1] is the type name. Remember
that a special symbol table entry is created during initialization
to allow uniform treatment of the type integer.

Nvarlist 2 Used to represent lists of variable declarations. Child[0] will be
an Ndecl.

Nfunclist 2 Used to represent lists of function definitions. Child[0] will be an
Nprocdefn or an Nfuncdefn.

Nprocdefn 3 Used to represent the definition of a void function. Child[0] is
an Nident node for the function’s name. Child[1] is a (possibly
NULL) list of Nformallist nodes. Child[2] is an Nbody node for
the function’s body.

Nfuncdefn 3 Used to represent the definition of a function that returns a value.
The use of the children is identical to that of an Nprocdefn.

Nformallist 2 Used to represent lists of formal parameter specifications.
Child[0] will be an Nvarparm or an Nvalparm.

Nvarparm 2 Used to represent the specification of a call-by-reference param-
eter. Child[0] is an Nident node for the formal parameter name.
Child[1] is an Nident node for the parameter type.

Nvalparm 2 Used to represent the specification of a call-by-value parameter.
The children are similar to those of an Nvarparm node. Child[1]
will always be an Nident node for the pseudo-identifier integer.

6

CS 434 Spring 2006

Node Num. of
Type Children Description

Nstmtlist 2 Used to represent statement lists. Child[0] will be one of the
following five “statement” phase types or another Nstmtlist node.

Nasgn 2 Represents an assignment statement. Child[0] will be a node of
type Nrefvar pointing to a subtree that describes the target of
the assignment. Child[1] will be a node whose type is classified
as an “expression”.

Ncall 2 Represents a call statement or a function call expression. Child[0]
will be an Nident node for the function’s name. Child[1] points
to a (possibly NULL) list of Nactuallist nodes.

Nretn 1 Represents a return statement. If an expression was included
in the statement, child[0] points to a sub-tree representing the
expression. Otherwise, child[0] is NULL.

Nif 3 Represents an if statement. Child[0] points to a sub-tree rep-
resenting the “boolean” expression. Child[1] points to a list of
Nstmtlist nodes that represents the then part. If an else part was
included, child[2] points to the list of Nstmtlist nodes represent-
ing the else part. Otherwise, child[2] is NULL. Note that the last
two children will be list nodes even if only a single statement is
included for either the then or else part.

Nwhile 2 Represents a while statement. Child[0] points to a tree represent-
ing the loop termination condition. Child[1] points to a statement
list representing the loop body. For loops are rewritten to appear
as Nwhile subtrees by the parser.

Nactuallist 2 Used to represent lists of actual parameters. Child[0] will be a
node of one of the expression phrase types.

Nrefvar 1 Nrefvar nodes are stored using the refvarnode type rather than
the internalnode type. They do, however, appear as internal
nodes in the tree. They appear as the roots of variable subtrees
pointed to by Nasgn nodes and nodes that are expected to point
to nodes representing expressions.
In the trees produced by the parser, the baseaddr of such a node
will point to either an Nident, Nselect or Nsubs node. After
semantic processing, an Nrefvar node will point to a node of some
expression phrase type.

Nselect 2 Represents a variable (or expression) formed by selecting a com-
ponent from some structure variable. Child[0] describes the struct
sub-variable. Child[1] is an Nident node for the name of the com-
ponent being selected.

Nsubs 2 Represents a variable (or expression) formed by subscripting
an array variable. Child[0] represents the array sub-variable.
Child[1] points to an expression sub-tree for the subscript ex-
pression.

7

CS 434 Spring 2006

Node Num. of
Type Children Description

unaries 1 The node labels Nnot and Nneg are used to represent expressions
formed using the logical not operator (!) and the arithmetic nega-
tion operator (unary -). Child[0] points to a sub-tree representing
the expression to whose value the operator should be applied.

binaries 2 The node labels Nor, Nand, Nlt, Ngt, Neq, Nle, Nge, Nne, Nplus,
Nminus, Ntimes, Ndiv and Nmod are used to represent expres-
sions formed using the logical, relational and arithmetic binary
operators. The sub-expressions to whose values the operator
should be applied are pointed to by child[0] and child[1].

Nerror 0 Inserted in tree at points where an error was detected in the
syntax of a phrase. Actually, the only place that such nodes ever
appear is as elements of “lists”. So, the only place you need to
check for them is when processing statement lists, parameter lists,
etc.

3 Symbol Table Details

Now, to complete the discussion of our scheme for representing C◦ programs, we must discuss more
details of the types used in the symbol table. As explained in the overview presented above, the symbol
table is composed of identifier descriptors and declaration descriptors.

3.1 Identifier Descriptors

Identifier descriptors are actually quite simple. There is one such descriptor for each distinct identifier
used in the program.3 A C language structure specification for the type identdesc used to store
identifier descriptors is shown in figure 3. The name field is just a pointer to the characters that

typedef struct iddesc {
char *name; /* The character string for the identifier */

struct iddesc *hashlink; /* Link for hash chains used by scanner */

union dcldesc *declstack; /* Head pointer for stack of declarations */

/* in open scopes. */

} identdesc;

Figure 3: Declaration for Type ‘identdesc’

form the identifier. The hashlink field is used to maintain lists of identifier with the same hash
value when building the hash table used by the scanner. It will not be of concern to you when doing
semantic processing. The declstack component is to be used as a pointer to the head of the linked list
representing the stack of declarations of the identifier found in scopes that are still open. The scanner
initializes this field to NULL.

3Including the pseudo-identifier integer as discussed above

8

CS 434 Spring 2006

3.2 Declaration Descriptors

Declaration descriptors are more complex than identifier descriptors. Depending on the type of dec-
laration involved (a type definition or a function definition or a variable declaration, etc.) different
structures must be used. Accordingly, as with tree nodes, the type used to describe declaration descrip-
tors is a union type. The C declaration for this union type is shown in figure 4.

/* This union describes the type of all declaration descriptors */

typedef union dcldesc {
struct unkdesc unk;

struct funcdesc func;

struct vardesc unkvar;

struct vardesc var;

struct formaldesc formal;

struct fielddesc field;

struct unktypedesc unktype;

struct arraydesc array;

struct structdesc structure;

} decldesc;

Figure 4: Definition of the type ‘decldesc’

While many distinct structure types are used as declaration descriptors they share several common
fields. The declarations of these common fields is grouped in a #define named COMMONFIELDS. This
#define is used to include the fields in each of the distinct structure type definitions. As in the syntax
tree definitions, all declaration descriptors contain a common type field used to determine the actual
format of a member of the union type. The value of this type field will be an element of the enumerated
type decltype. Also, a structure type unkdesc is provided to allow one to reference the common fields
of a declaration descriptor before the actual type of the descriptor involved can be determined. The
declarations of COMMONFIELDS, decltype and unkdesc are shown in figure 5.

The first of the common fields is the type field which holds an element of the enumeration type
decltype. The field ident is used by all declaration descriptors to hold a pointer back to the identifier
descriptor for the identifier associated with the declaration. The line component is used to hold the
line number on which the declaration occurred.

The next two common fields are not used in all declaration descriptors. In particular, they are not
used in descriptors for structure component names. The first of these two fields is levellink. This is
used to link all of the declarations found in an open scope together in a linked list. The second is level
which holds the nesting level of the scope in which the declaration occurred.

The last component in COMMONFIELDS is decllink. During declaration processing, this field is used
as the “next” pointer for the linked list that is used to implement the stack of declaration descriptors
associated with a given identifier descriptor. The head pointers for these stacks are stored in the
declstack components of identifier descriptors.

There are many different kinds of declaration descriptors, but they all fall within three main groups.
While all descriptors share the COMMONFIELDS, descriptors within each group share additional features.

9

CS 434 Spring 2006

/* Enumeration type used to label the various type of declaration */

/* descriptors that can occur in the symbol table. */

typedef enum {
funcdecl, /* function declarations */

vardecl, /* global and local variables */

formaldecl, /* Formal parameter names */

fielddecl, /* Component names of struct type */

arraydecl, /* Type names for array types */

structdecl, /* Type names for struct types */

integertype /* Label for pseudo-declaration of integer */

} decltype;

/* All declaration descriptors contain the following components */

/* (although structure component descriptors don’t use them all.) */

#define COMMONFIELDS decltype type; /* Type of this declaration descriptor

*/ identdesc *ident; /* pointer to associated ident. descriptor */ int

line; /* Line number at which declaration occurred. */ union dcldesc

levellink; / list of declarations made at nesting level */ int level; /*

nesting level of this declaration */ union dcldesc *decllink; /* stack of active

declarations of this ident */

/* Generic structure used to access common fields of decl. descriptors. */

struct unkdesc {
COMMONFIELDS

};

Figure 5: Definitions of shared features of declaration descriptors

3.2.1 Type Name Declaration Descriptors

The first group includes all descriptors for names associated with types. This includes struct type
descriptors, array type descriptors and a special descriptor for the built-in integer type. The definitions
for this group of type descriptors is shown in figure 6.

All type name declaration descriptors share a field named typesize which should be set equal to
the number of units of memory needed to hold an element of the type. To provide a way to write clear
code that accesses this field without determining the particular sort of type involved, a structure named
unktypedesc is declared and a choice of unktype is included in the decldesc union type.

Structure types are described by declaration descriptors of type structdesc. The only special com-
ponent of such a descriptor is a pointer, fields, to a list of declaration descriptors for the components
of the structure type.

Array types are described by declaration descriptors of type arraydesc. An array declaration
descriptor contains a size field in which the compiler will store the number of elements in the array.
It also needs to somehow represent the element type of the array. The natural way to accomplish this
would be to have the array type’s declaration descriptor point to the descriptor for the element type.
We will use a somewhat more complex scheme (for reasons that will not become clear until near the
end of the project). For each array you will need to create a declaration descriptor for an imaginary
variable of the array’s element type. The array type’s elmntvar field will then be set to point to this
variable descriptor which will in turn point to the descriptor for the array’s element type.

10

CS 434 Spring 2006

/* Structure used to reference common fields of type descriptor. */

struct unktypedesc {
COMMONFIELDS

int typesize; /* Memory required for var. of this type */

};

/* Structure used for array type declaration descriptors. */

struct arraydesc {
COMMONFIELDS

int typesize; /* Memory required for array of this type */

int size; /* Number of elements in array */

union dcldesc * elmntvar; /* decl. descriptor for imaginary variable of

this array’s element type */

};

/* Structure used for struct type declaration descriptors. */

struct structdesc {
COMMONFIELDS

int typesize; /* Memory required for recd. of this type */

union dcldesc *fields; /* Header for list of this type’s components */

};

Figure 6: Declarations for type declaration descriptors

3.2.2 Variable and Field Name Descriptors

The second group of related forms of declaration descriptors are those for things that act like variables:
actual variables, formal parameter names and structure components. Again, we define a component of
the decldesc union type that can be used to access the shared components of any one of the members
of this group. This component is named unkvar. The declaration for the three declaration descriptor
formats that fall in this group are shown in figure 7.

There are two fields shared by the declaration descriptors of variables, formals and structure com-
ponents. The first is vartype which should be set equal to a pointer to the declaration descriptor for
the variable or component type. The second is disp which should be set equal to the displacement to
the field or variable within the structure or activation record in which it is located. These are the only
special fields in the struct type used for variable declaration descriptors, vardesc.

Descriptors for formal parameters contain two additional fields. The isVal field is basically a
Boolean flag set to “true” (i.e. 1) if the parameter is to be passed by value and to “false (i.e. 0) if the
parameter is passed by reference. In addition, the formallink field is used to chain the descriptors for
the parameters of a given function into a list.

Structure fields names are associated with declaration descriptors of type fielddesc. The structtype
component of each such descriptor is used to hold a back pointer to the descriptor for the structure
type to which the component belongs. The hashlink field is used to build the chains of descriptors
that form the hash table used to look up the descriptor associated with a reference to a structure field
name. Finally, the fieldlink component is used to chain all the declaration descriptors for a given
structure’s fields together in a linked list.

11

CS 434 Spring 2006

/* Structure used for variable declaration descriptors. */

struct vardesc {
COMMONFIELDS

union dcldesc * vartype; /* decl. descriptor for the variable’s type */

int disp; /* disp. within activation record or globals */

};

/* Structure used for formal parameter declaration descriptors. */

struct formaldesc {
COMMONFIELDS

union dcldesc * vartype; /* decl. descriptor for the formal’s type */

int disp; /* disp. within activation record */

union dcldesc * formallink; /* link for list of func’s formals. */

int isVal; /* True if call by value formal */

};

/* Structure used for struct field name declaration descriptors. */

struct fielddesc {
COMMONFIELDS

union dcldesc * vartype; /* decl. descriptor for component’s type */

int disp; /* displacement to field within structure */

union dcldesc * hashlink; /* link pointer for hash chain */

union dcldesc * structtype; /* decl. descriptor for type to which the */

/* component belong */

union dcldesc *fieldlink; /* Next pointer for type’s list of fields */

};

Figure 7: Declarations for variable/field name declaration descriptors

/* Structure used for function declaration descriptors. */

struct funcdesc {
COMMONFIELDS

union dcldesc * formallist; /* head of list of this func’s formals. */

int paramcount; /* Count of parameters func. expects */

int isfunc; /* True if this is a function. */

int localsize; /* Size of space required for locals */

CODELBL * entrylbl; /* Label placed on first line of func */

};

Figure 8: Declarations for function name declaration descriptors

12

CS 434 Spring 2006

3.2.3 Function Name Descriptors

The only remaining form of declaration descriptor is that used to represent names defined as functions.
The type used for such descriptors is named funcdesc and is shown in figure 8.

The formallist component of a funcdesc structure points to a list of declaration descriptors
stored as structures of type formaldesc. This list should contain the declaration descriptors for all of
the formal parameters associated with the function. This list will be used to type check calls made
to the function. The paramcount field should be set equal to the number of parameters the function
expects.

The isfunc field is a Boolean set to true if the name is declared as a function returning an int
(rather than void). The number of memory units required for local variables and temporary storage is
stored in localsize. Finally, the entrylbl field is used by the code generator to generate jumps to
the function’s entry point.

13

