
CS 434 Meeting 11 — 3/9/06

Anouncements
1. Distribute assignment 2.

Top-down Parsing

1. At any step in the process of a top-down parse, one has a sentential
form that one wishes to re-write so that it more closely matches the
target string (σ). At each such step one must make two choices:

(a) which of the non-terminals in the current sentential form to re-
place (left-most to support left-to-right processing of input).

(b) which production to apply to the selected non-terminal.

2. To make our parse “deterministic”, we want to decide how to expand
the first terminal on the stack based only on what we have matched so
far and on some finite prefix of the remaining input. If this is possible
using a prefix of length k, we say that the grammar is LL(k).

3. In many cases, this is not possible for any k.

• Consider the productions:

< stmt > → if < expr > then < stmt > end
| if < expr > then < stmt > else < stmt > end

• Suppose that we have generated a sentential form in which the
left-most non-terminal is < stmt > and the next input characters
to be read is “if”. Which production should we choose?

4. For most languages, however, we can find a grammar in which one can
determine which production to use next by just looking at the first
unmatched character. Such a grammar is called an LL(1) grammar.

5. The following grammar:

< stmt > → if < expr > then < stmt > < iftail >

< iftail > → else < stmt > end
| end

is obviously LL(1) because:

(a) The right hand side of each production begins with a terminal,
and

(b) if two productions have the same left hand side, then their right
hand sides begin with different terminal symbols.

A grammar with these two properties is said to be an S-grammar. Any
S-grammar is LL(1).

6. One of the attractions of top down parsing is that there is a simple
scheme for implementing a top down parser in any language that sup-
ports recursion. The following procedure skeletons show how such a
“recursive descent” parser for the S-grammar:

< S > → a < R > | b < S > b < R >

< R > → b < R > | a

would look (it assumes that “ch” holds the next input character to be
processed):

procedure R;

if ch = ’b’ then

getnextchar;

R;

else if ch = ’a’ then

getnextchar;

else

error

end

end R;

procedure S;

if ch = ’a’ then

getnextchar;

R;

else if ch = ’b’ then

1



getnextchar;

S;

if ch = ’b’ then

getnextchar;

else

error;

end;

R;

end

end R

7. One of the nice things about recursive descent parsing is that you can
“massage” the code instead of the grammar.

Bottom-up Parsing

1. Recall that in a bottom-up parser, we repeatedly simplify sentential
forms (starting with the input) by replacing the right hand side of a
production by the left hand side.

• Again consider the process of parsing the string ’bbaababa’ rela-
tive to the grammar:

< S > → a < R > | b < S > b < R >

< R > → b < R > | a

Head of sentential form Remaining input

bbaababa
b baababa

bb aababa
bba ababa

bbaa baba
bbaR baba

bbS baba
bbSb aba

bbSba ba
bbSbR ba

bS ba
bSb a

bSba
bSbR

S

• Note that the parser depends on a stack to remember details of
decisions it has already made (somewhat as in a top-down parser).

– In a bottom up parser, the stack holds a prefix of a sentential
form that the parser hopes the input will complete.

– In a top down parser, the stack holds a suffix of a sentential
form which the remaining input must match.

• At each step a three part decision must be made:

(a) Whether it is time to quit (i.e. either the parse is complete
or an error has been encountered).

(b) If we are to continue, should we shift more input symbols
onto the stack or are we ready to replace the top of the stack
with the left-hand side of some production.

(c) If we are to reduce, which production should be used.

• As a result, bottom-up parsers are also known as shift-reduce
parsers.

• Note that one can extract a right-most derivation by reversing
the steps taken during a bottom-up parse.

• To be “determinisitic”, a bottom-up parser must make these de-
cisions based on examining at most k symbols of the remaining

2



input.

2. One cannot always parse bottom-up by simply reducing as soon as one
can match the right hands side of a production.

• Consider

If we begin parsing ‘bbaababa’ by reducing the first ‘a’ to obtain
’bbRababa’ we will get stuck because the string we obtain is not
a sentential form of the language.

• Consider the effects of ǫ productions.

3. Assuming that the string being considered is a sentential form, the
correct string to reduce is the handle as defined by:

simple phrase Given a grammar G and a string w = αγβ such that

(a) w,α, γ, β ∈ (Vn ∪ Vt)
∗ ,

(b) for some U ∈ Vn, U→γ ∈ P and αUβ is a sentential form of
G

we say that γ is a simple phrase of the sentential form w.

handle The leftmost simple phrase of a sentential form is called the
handle.

4. The problem one must solve to construct a bottom-up parser is to find
rules for determining when one is looking at the handle.

• These rules can only involve the current contents of the stack and
a bounded number of input characters.

5. The class of grammars for which one can parse bottom-up determinis-
tically (i.e. in without backup) looking ahead at most k characters at
each step is called the class of LR(k) grammars.

Massaging Grammars

1. We have seen that for a given language some grammars may be harder
to parse with than others (In fact, some may be impossible to parse
with “deterministically”). Accordingly, one sometimes must apply
techniques for rewriting a grammar into a more appropriate form.

2. We have already used on of these techniques known as left-factoring.
Remember the problem I noted with using the standard rules for an if
statement in a top down parser.

< stmt > → if < expr > then < stmt > end
| if < expr > then < stmt > else < stmt > end

The problem can be remedied by “factoring” out the common prefix
of these two productions giving the rules:

< stmt > → if < expr > then < stmt > < iftail >

< iftail > → else < stmt > end
| end

Note, however, that the phrase structure one gets by parsing may no
longer be quite what you had in mind.

3. Another common problem one may encounter in a grammar is a self-
recursive rule.

• A left recursive rule (i.e. of the form A → A α) is fatal in a
top-down parser because if the parser chooses to apply such a rule
once it will do so indefinitely .

• A right recursive rule (i.e. of the form A → α A) is undesirable
(i.e. I better not see any in your parsers) in a bottom up parser
because it may lead to overflow in the parser’s stack.

4. Grammar alterations designed to avoid undesirable forms of recursion
can seriously impact phrase structure.

• Consider a simple grammar for statement lists:

< slist > → < stmt >

| < stmt > ; < slist >

• The parse tree produced for a list of statement using this grammar
would look like:

3



<slist>

<stmt> ;

<slist><stmt> ;

<stmt>

<slist>

With the exception of the dangling semi-colons, this should look
a lot like the syntax tree my parser builds for statement lists (and
other list nodes).

• Unfortunately, A grammar of this form forces a bottom-up parser
to shift all the statements onto the stack before reducing any of
them to “slists”. This wastes memory.

• It isn’t difficult to fix this by switching to the grammar:

< slist > → < stmt >

| < slist > ; < stmt >

This grammar:

– describes the same language, and

– can be parsed efficiently bottom-up.

• The trees produced by the alternate grammar would look more
like:

;

;<slist>

<stmt>

<stmt>

<slist> <stmt>

<slist>

If you think about how to process the statements in this tree in
the order in which they would be executed, you will quickly realize
that a simple loop can’t do it.

4


