
CS 361 Meeting 4 — 2/17/20

Announcements
1. Homework 2 is now online. The material related to the “non-

deterministic” components of the last two problems will be covered
on Wednesday.

Quick Review

1. Last time, I ended by presenting a mathematical formalism for deter-
ministic finite automata. This will enable us to reason more broadly
about their properties.

Definition. A DFA is a five tuple M = (Q,Σ, δ, s, F ) where:

Q is a finite set of states

Σ is the input alphabet

δ : Q× Σ→ Q is a state transition function

s ∈ Q is the start state

F ⊆ Q is a set of accept states

2. Using this notation, we can give a formal description of our machine
that recognizes even binary numbers:

• Q = {e, o}
• Σ = {0, 1}

•
δ: 0 1

e e o
o e o

• s = o

• F = {e}

Families of Languages and Machines

1. One advantage of this formal definition of a DFA is that it allows us
to describe and reason about collections of similar DFAs rather than
needing to draw a diagram for a specific DFA.

Click here to view the slides for this class

2. Through our examples, we have seen that the set of strings that rep-
resent binary numbers that are even is regular and that the language
of binary numbers that are divisible by 3 is regular. We might well
speculate that the language

LDivN = {w | w ∈ {0, 1}∗ and w encodes a number divisible by N}

is regular for all values of N .

3. To show that all these languages are regular, we will describe a family
of DFAs, MDivN such that L(MDivN ) = LDivN . In particular, we
define

MDivN = (QN , {0, 1}, δN ,m, 0)

where:

QN = { m, 0, 1, ... , N-1 } and

δN is defined by

• δN (m, 0) = 0

• δN (m, 1) = 1

• δN (i, d) = (2i+ d) mod N for i ∈ {0, 1, ..., N − 1}

4. You might recognize that the machine presented as a solution to one
of our class exercises is MDiv3:

0

3n + 2

1

0

3n

3n + 1

1

1

0
1

!
0

1

http://www.cs.williams.edu/~tom/courses/361/notes/Lect4slides.pdf


Building State Sets

1. When giving a formal description of a machine, it is useful to think
about various ways to describe the state set. Constructing a state
set out of tuples of values including subsets of the integers and other
setsand can also make it possible to described the transition function
δ clearly and concisely using the well known operations like addition.

• Hopefully, it was evident that we could not have included the line

δN (i, d) = (2i+ d) mod N for i ∈ {0, 1, ..., N − 1}

in our definition of MDivN if we had defined the state set for this
machine as Q = { none, divisible, remainderis1, remainderis2}.
• Another example that illustrates how useful it can be to include

subsets of the integers in your state set is the BCD example we
considered.

• I presented an FSA that solves this problem by tracking the value
of the prefix of the group of four bits currently being scanned:

e
good

1

1

0

2

0

3
bad

0

0

1

1 or 0

0

11

6

7

0
1

4

5

0

1

2

3

0

1

0

1

0

1

0, 1
0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0

1

• We could take this idea even farther and replace “good” by 10
states labeled with the values 0 through 9 and “bad” with 6 states
labeled with 10 through 15.

• The transitions out of each of the states in this diagram depend
on the value written in the center of the state and the column
in the diagram in which the state occurs. The column each state
falls in corresponds to the position the machine is up to in the
group of four digits currently being scanned.

• Based on this observation, we can build a state space out of pairs
of integers. The first integer in each pair will encode the column
each state in the diagram appears in, the second integer will en-
code the value of the prefix of the group of four digits that has
been scanned so far.

• Given this approach, we can define MBCD = (Q,Σ, δ, s, F ) where:

– Σ = {0, 1}
– Q = {0, 1, 2, 3, 4} × {0, ...15}
– s = (0, 0)

– F = {4} × {0, . . . , 9}
– δ((c, v), i) = (c+ 1, 2v + i), if c < 4

– δ((c, v), i) = (1, i), if c = 4 & v < 10

– δ((c, v), i) = (c, v), if c = 4 & v ≥ 10

Formalizing L(M)

1. Earlier we gave simple rules for evaluating a string with respect to the
diagram of a finite automaton. Now we can give a formal definition of
how to decide if an automaton accepts or rejects a string.

• Our text defines the notion that a string belongs to the language
of a DFA in terms of the existence of a sequence of states related to
the sequence of symbols in the string and the machine’s definition
in ways that reflect the intent to capture transitions with the δ
function.

Definition: We say that a FSA M = (Q,Σ, δ, s, F ) ac-
cepts a string w and write w ∈ L(M) if and only if

2



for some sequences (w1, . . . , wn) and (q0, . . . , qn) where
wi ∈ Σ and qi ∈ Q:

– w = w1w2 . . . wn

– q0 = s

– qi = δ(qi−1, wi) for 1 ≤ i ≤ n
– qn ∈ F

• We will frequently use an alternate but equivalent definition that
depends on a recursive definition of a function that extends δ.

• Let δ̂ be a function from Q × Σ∗ to Q (instead of just Q × Σ
like δ). That is, it operates on state/string pairs instead of just
state/character pairs.

• We want δ̂ to function as an extension of δ that determines the
final destination reached after performing all of the transitions
associated with the symbols in its second parameter.

• Define δ̂ inductively on the length of a string using δ:

δ̂(q, ε) = q (q ∈ Q)

δ̂(q, wx) = δ(δ̂(q, w), x) (q ∈ Q, x ∈ Σ, w ∈ Σ∗)

• Note that δ(q, a) in the definition refers to the transition table so
δ̂ and δ agree on strings of length 1.

2. With δ̂ in hand we can give a definition of acceptance:

Definition A string w ∈ Σ∗ is accepted by a DFA M if and
only if δ̂(s, w) ∈ F .

3. The language of a DFA M follows naturally:

Definition L(M) = {w |w ∈ Σ∗ and δ̂(s, w) ∈ F}

Closure Properties

1. Another advantage of having formal definitions for finite state machines
and regular language is that we can prove results showing that the set
of regular language is closed under certain set operations.

• We say that a set is closed under an operation if performing the
operation on elements of the set only produces other elements of
the set. The integers, for example, are closed under addition but
not under division.

• Since languages are just sets, it is interesting to ask whether the
set of regular languages is closed under set operations like union,
intersection and union.

2. Consider the DFA we showed above that recognized the set of binary
strings with even parity (i.e., with an even number of 1s):

1
odd

00

even

1

Suppose we instead wanted to use odd parity. That is, we wanted
a DFA that recognized the set of binary strings containing an odd
number of 1s. What would this DFA look like?

• All we need to do is make the accepting state non-accepting and
the non-accepting state accepting.

1

00

even odd

1

3. This is an example of a general property of regular languages. They
are closed under complementation. That is, if L regular language over
Σ∗ then the language of all strings in Σ∗ not in L is also regular.

3



Our formalism gives us a means to prove this:

Theorem: For any language L over an alphabet Σ∗, the
complement of L, L̄ is also a regular language.

Proof: Given that L is regular, we know that there exists
some FSM M = (Q,Σ, δ, q0, F ) such that L(M) = L. To
see that L̄ is regular, we must show that there must also be
some M ′ such that L(M ′) = L̄.

Let M ′ = (Q,Σ, δ, q0, Q−F ). Now we know that w ∈ L̄ ⇐⇒
w /∈ L ⇐⇒ w /∈ L(M) ⇐⇒ δ̂(q0, w) /∈ F ⇐⇒ δ̂(q0, w) ∈
Q− F ⇐⇒ w ∈ L(M ′). This shows that L̄ = L(M ′) so we
can conclude that L̄ is regular.

4. Knowing that the set of regular languages is closed under some opera-
tion can provide the means to prove that a language is regular without
constructing a DFA specifically to recognize the language. Consider
how we could use a closure property to show that the language of bi-
nary strings in which both the number of 1s and the number of 0s was
even.

• To keep things clear, let’s first rename the states of one of our
favorite DFAs to indicate that they keep track of whether the
number of 1s is even or odd:

1
o1

00

e1

1

• Now, we can easily describe a very similar machine that recognizes
the set of strings containing an even number of 0s:

0
o0

11

e0

0

• The language we want to describe is the intersection of the lan-
guages recognized by these two machines. Therefore, if we can
show that the intersection of any two regular languages (and are
willing to assume the two machines above recognize the obvious
languages) we can conclude that the language of strings contain-
ing even numbers of both 0s and 1s is regular.

4


