

Announcements

Homework 9: due Friday

Delayed office hours today - 2:30?

Volunteer opportunity this afternoon

-Computation-History

Definition: Given a TM M = (Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject}) and a string w $\in \Sigma^*$, we define the language of computation histories for M on w as:

LComputation-History(M, W) = {wow1...wn | each wi is a configuration for M, wo is the initial configuration for w, wn is a final/accept configuration, & each wi yields wi+1 according to 8 }

Le Computation-History

Definition: Given a TM M = (Q, Σ , Γ , δ , qo, qaccept, qreject) and a string w $\in \Sigma^*$, we define the language of computation histories for M on w as:

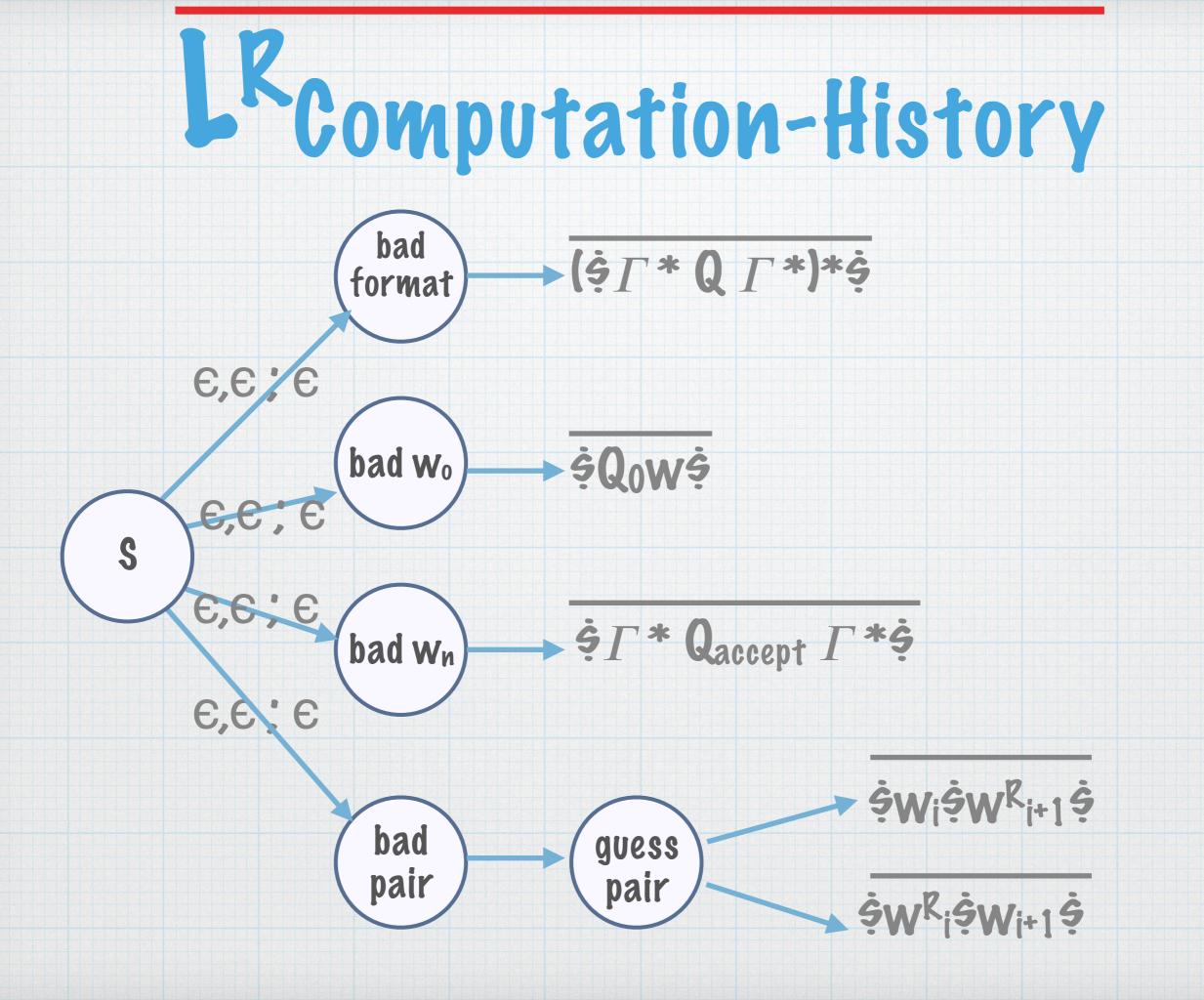
L^KComputation-History(M, W) = {wow^R1...w_n | each w_i is a configuration for M, w₀ is the initial configuration for w, w_n is a final/accept configuration, each wi yields w_{i+1} according to δ, & every other w_i is reversed }

L^RComputation-History

Definition: Given a TM M = (Q, Σ , Γ , δ , qo, qaccept, qreject) and a string w $\in \Sigma^*$, we define the language of computation histories for M on w as:

L^RComputation-History(M, W) =

{wow^R1....w_n I some w_i is not a configuration for M, w₀ is not the initial configuration for w, w_n is not final/accept configuration, or some wi does not yields w_{i+1}, but every other w_i is reversed }



Proof that Allcrg not R.E.

- Assume that ALL_{CFG} is recognized by M_{ALL} and construct a machine $M_{\overline{ATM}}$ that behaves as follows:
- 1. On input (M,w):
 - 1.1. Construct an encoding $\langle G_{(M,w)} \rangle$ for a CFG
 - for the language L^R Computation-History (M, W)
 - 1.2. Run Mall on $(G_{(M,w)})$ (and accept if it does).
- 2. If the input is not of the form $\langle M,w\rangle$, accept

This machine would recognize MATM which we have shown is impossible, so MALL must not exist and ALLCFG must not be recognizable.

	DECIDABLE	R.E.	not R.E.	not co-R.E.
ETM			X	
ETM		X		
EQCFG			X	
EQCFG		X		
EQTM				X
EQTM				X
ALLCFG			X	
ALLCFG		X		
ALLTM				X
ALLIM				X

Proof that ETM not R.E.

Assume that E_{TM} is recognized by M_E and construct a machine $M_{\overline{ATM}}$ that behaves as follows:

1. On input (M,w):

1.1. Construct a description, <M'>, of a TM M' that behaves as follows:

On input w', simulate M on input w and: i. accept w' if M accepts w.

ii. otherwise reject w' or loop.

1.2. Run M_{E} on $\langle M' \rangle$ (and accept if it does).

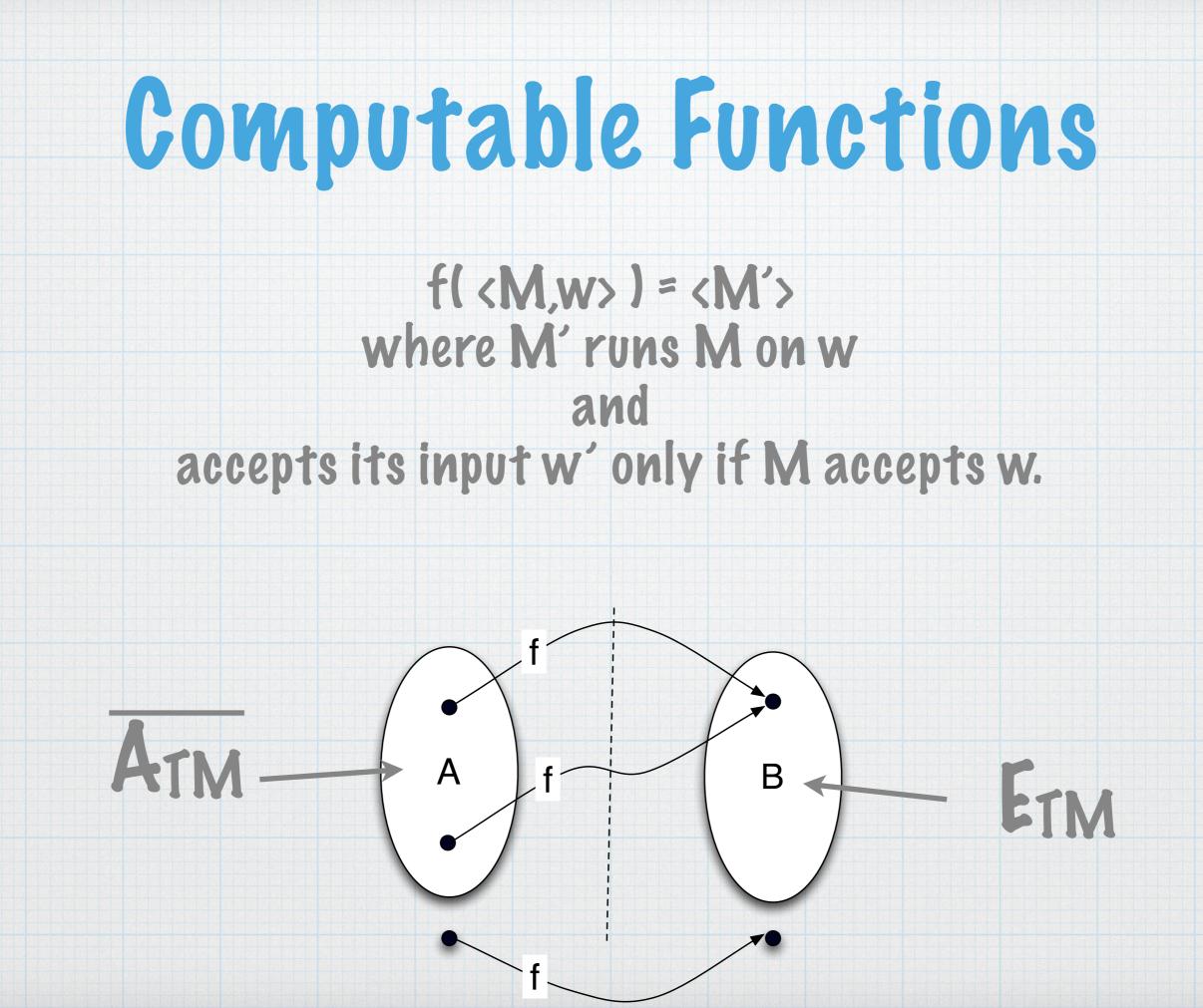
2. If the input is not of the form $\langle M,w\rangle$, accept

Computable Functions

Definition: A function $f: \Sigma^* \to \Sigma^*$ is <u>computable</u> iff there is a Turing machine M such that on every input w, M halts with f(w) on its tape.

Computable Functions

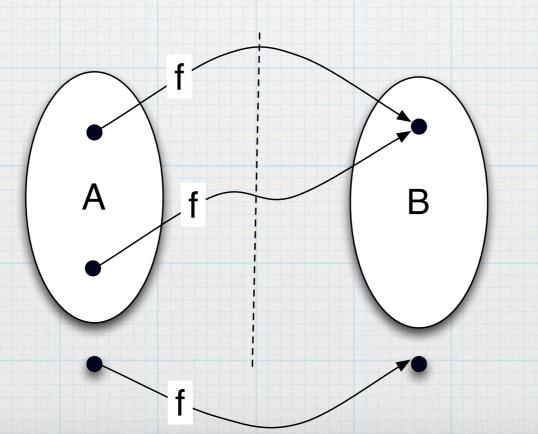
f(<M,w>) = <M'> where M' runs M on w and accepts its input w' only if M accepts w.

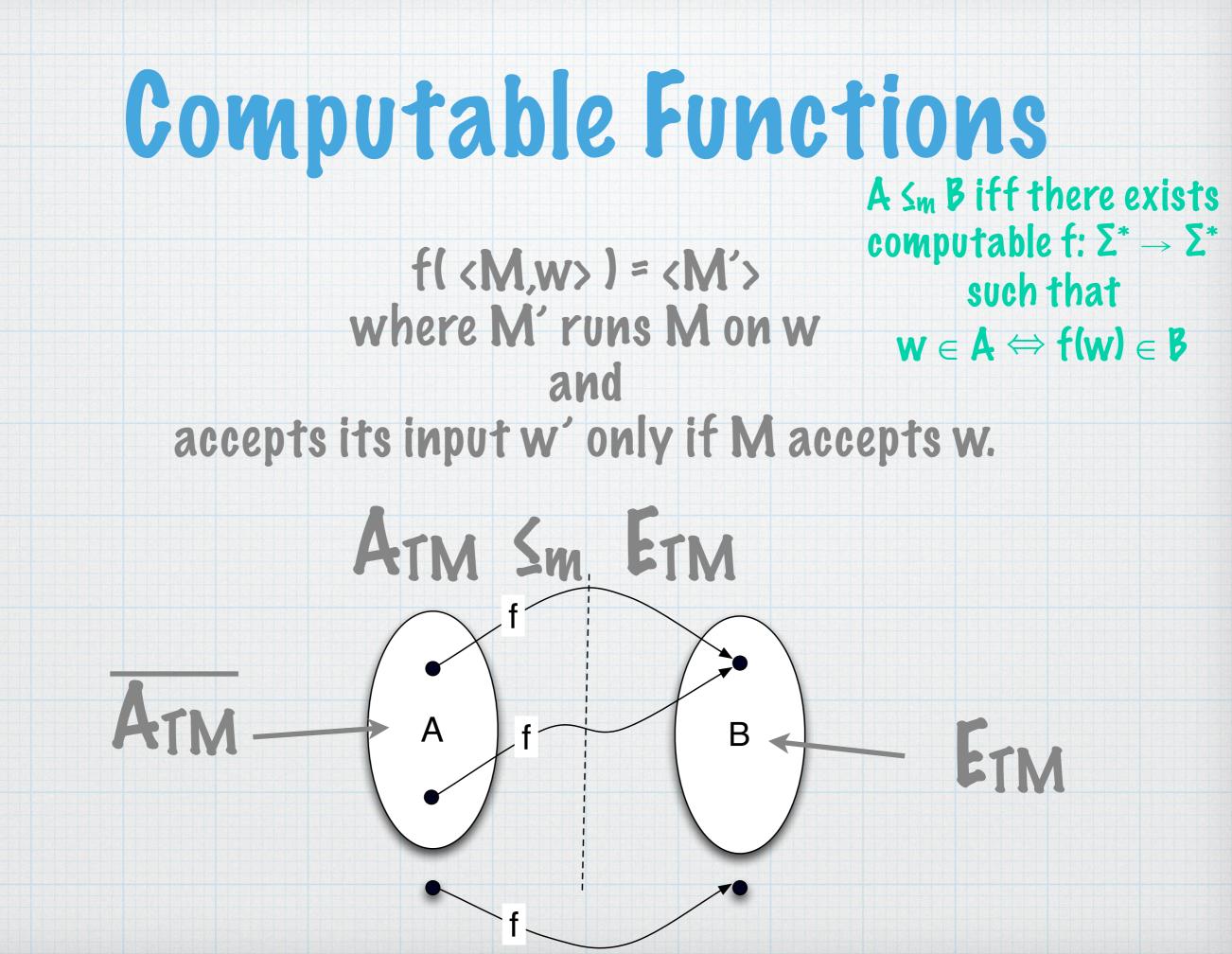


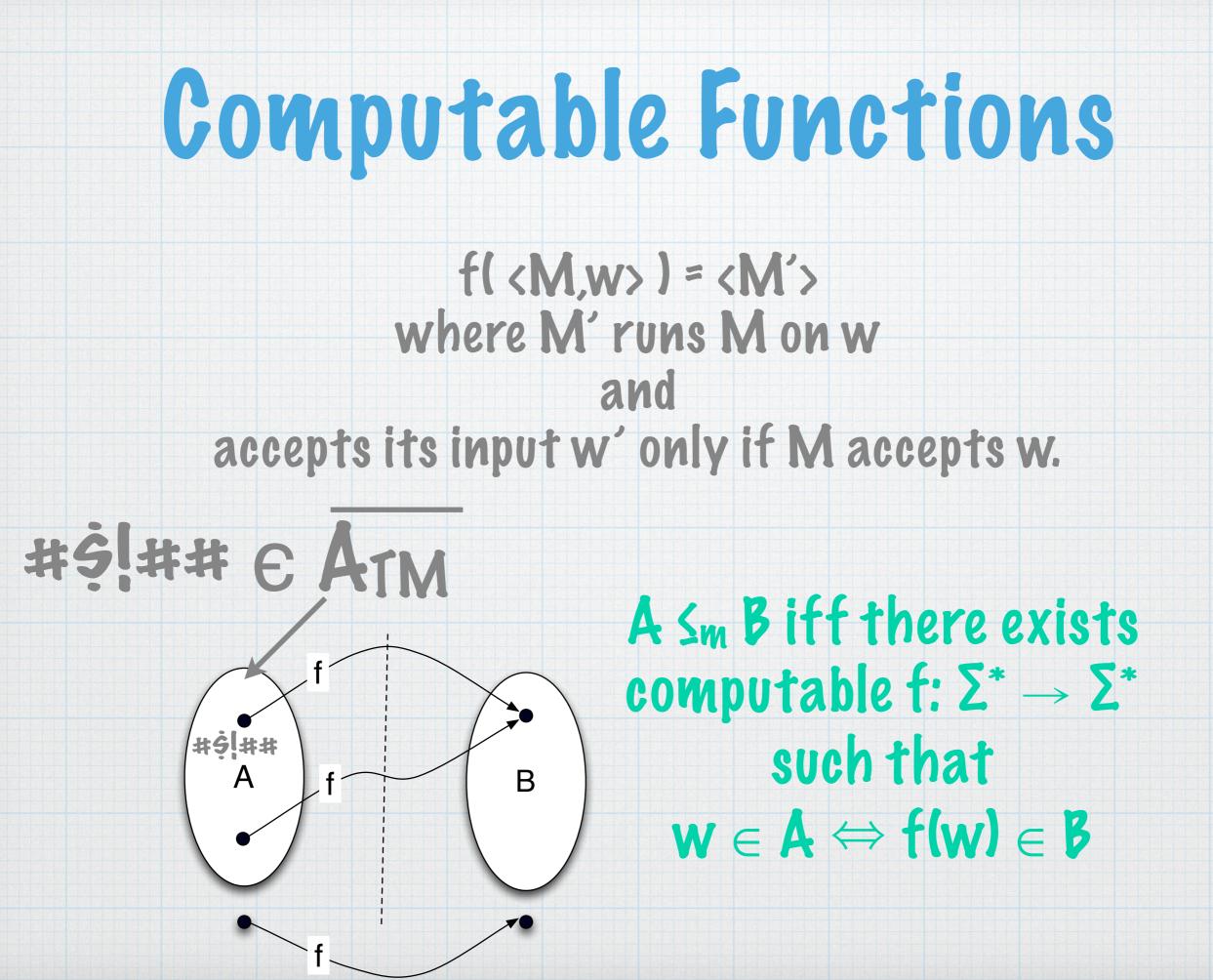
Definition: Language A is many-to-one reducible to language B if there exists a computable function f: $\Sigma^* \to \Sigma^*$ such that

 $w \in A \Leftrightarrow f(w) \in B$

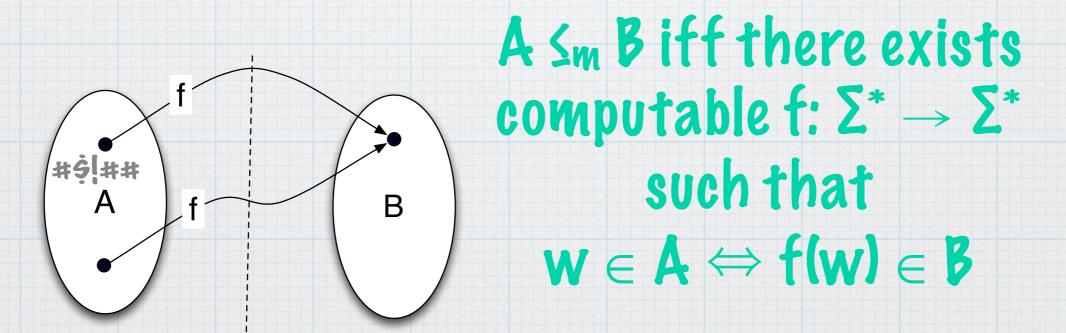
for every $w \in \Sigma^*$. We call f a reduction, write A \leq_m B and say that A is easier than (or just as hard as) B.

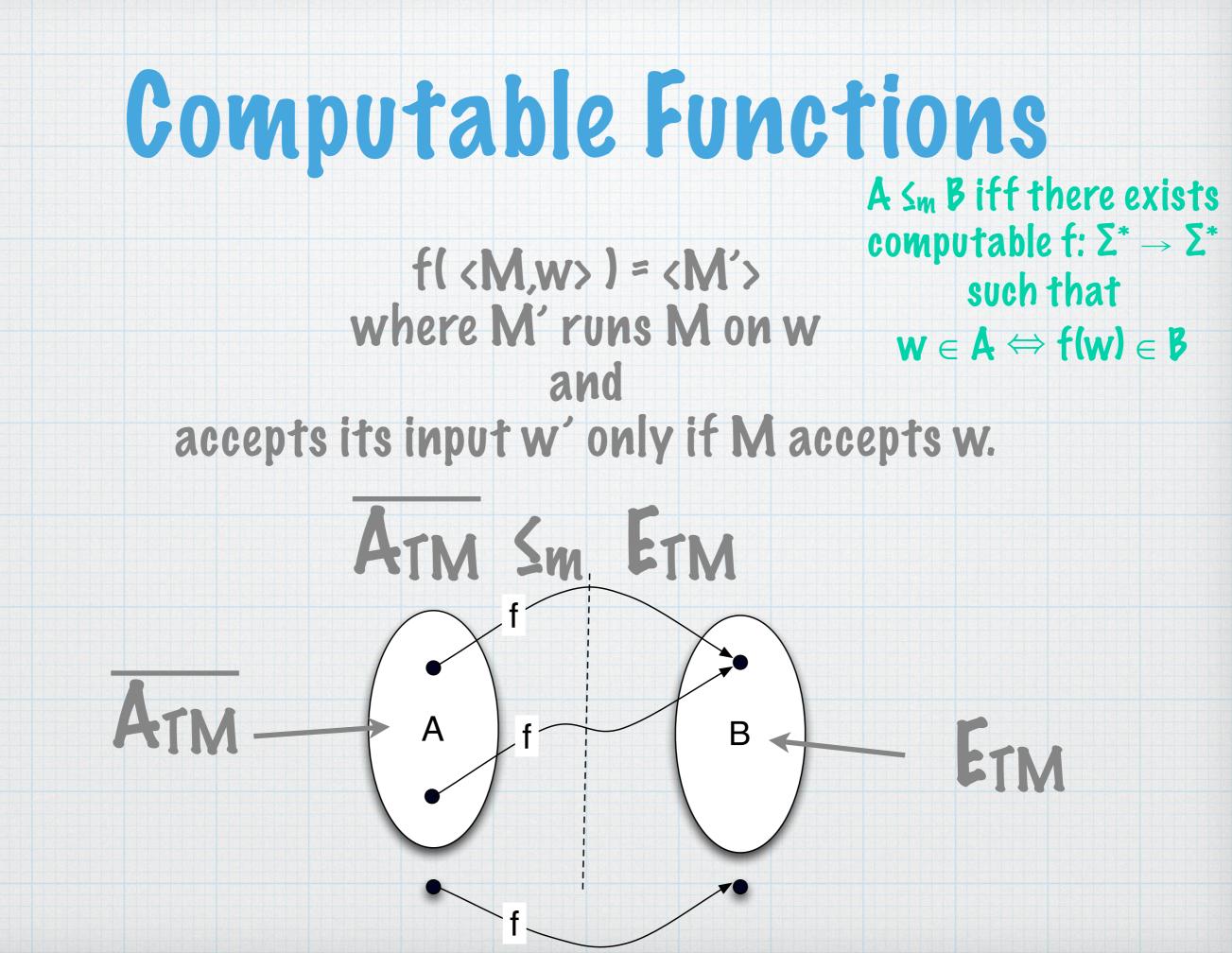


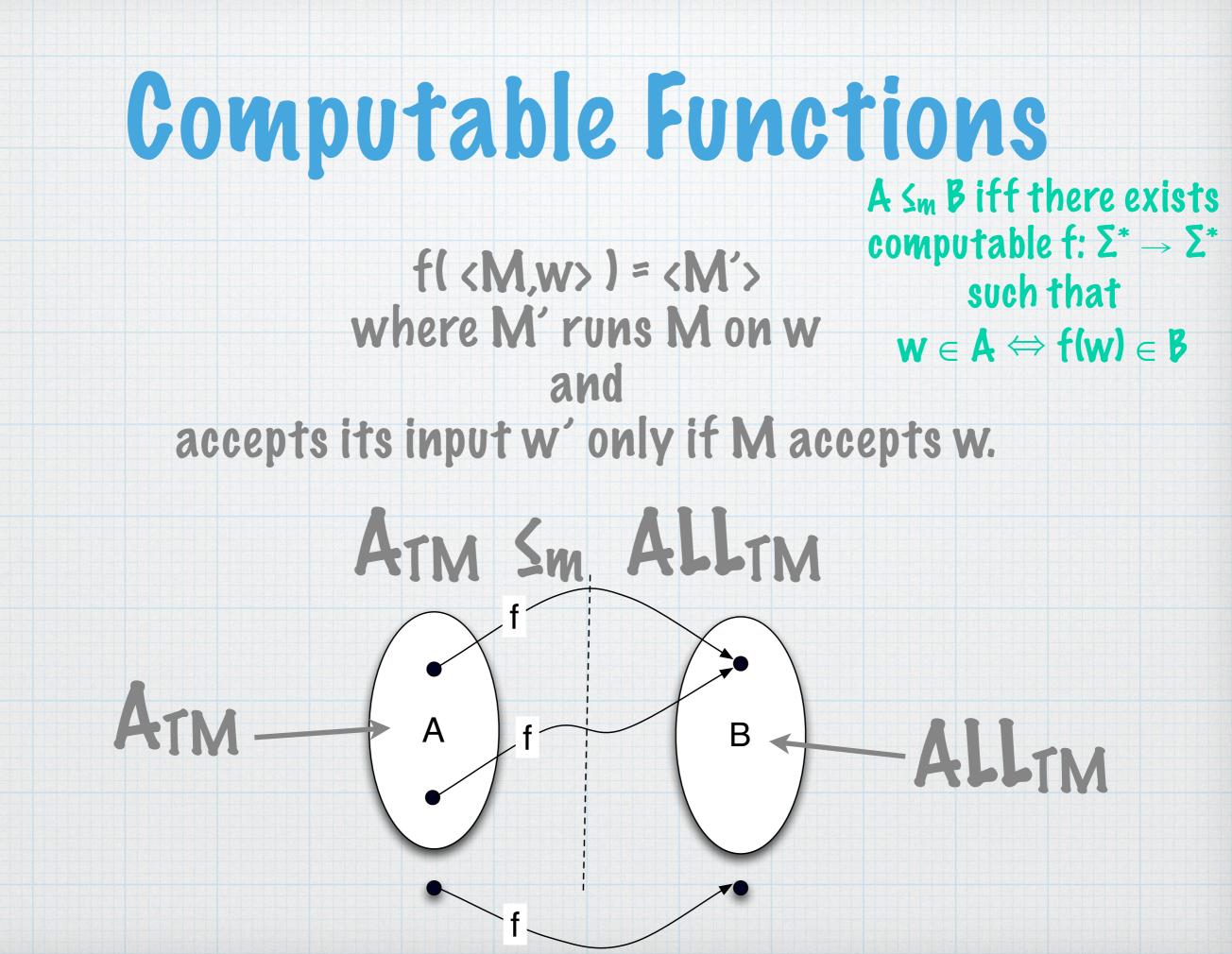


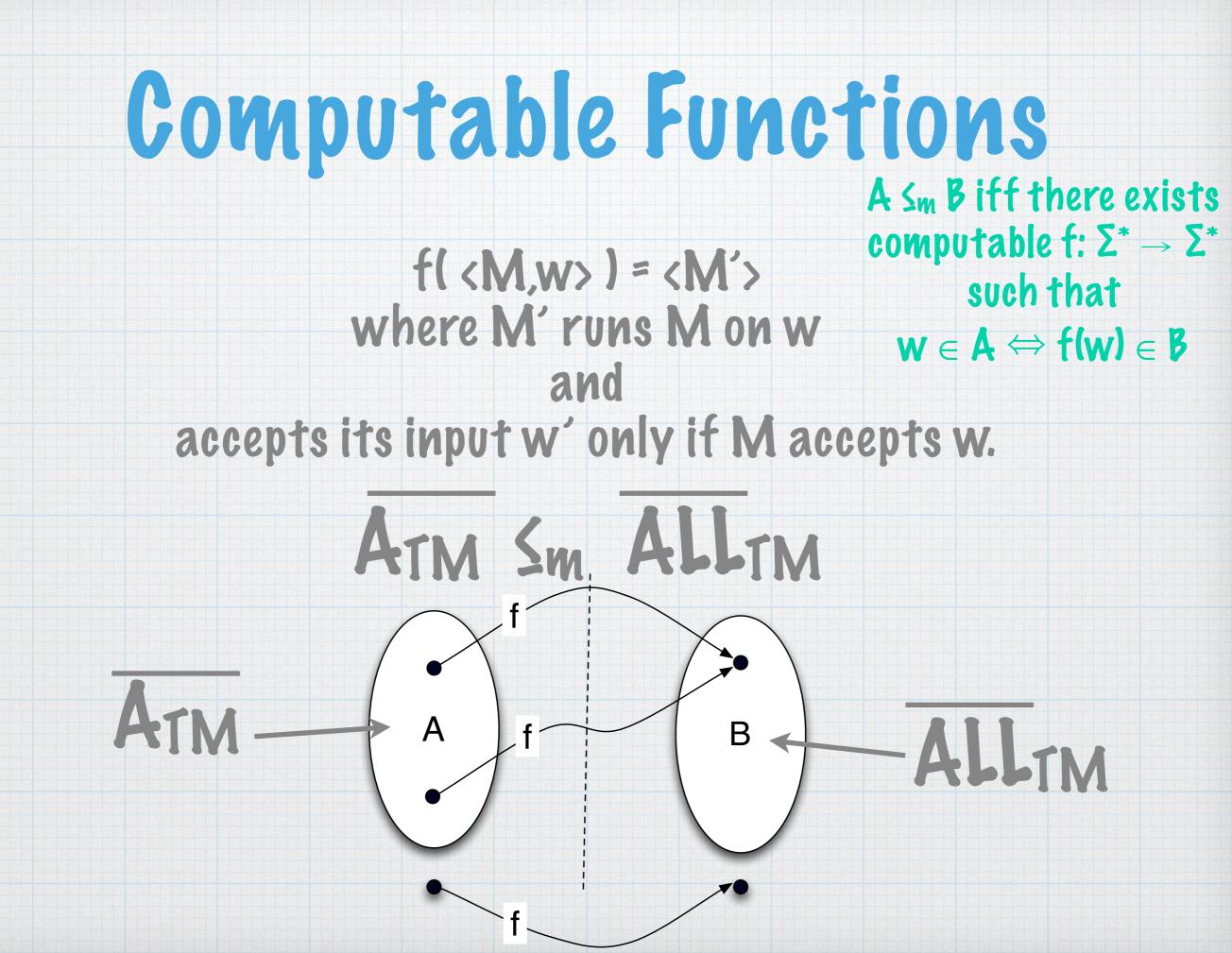


Computable Functions $f(x) = \langle M' \rangle$, if $x = \langle M, w \rangle$ $f(x) = \langle EMPTY \rangle$, otherwise where $L(EMPTY) = \phi$ M' runs M on w and accepts its input w' only if M accepts w.





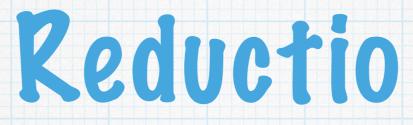




* If by assuming M decides B we can build M' that decides A then ...

⇒if B is decidable, A is decidable

⇒if A is undecidable, B is undecidable



* If by assuming M decides B we can build M' that decides A then ...

- ⇒if B is decidable, A is decidable
- ⇒if A is undecidable, B is undecidable

* If A Sm B then ...

- ⇒if B is decidable, A is decidable
- ⇒if A is undecidable, B is undecidable

* If by assuming M recognizes B we can build M' that recognizes A then ...

⇒if A is not R.E., B is not R.E.

* If $A \leq_m B$ then ...

⇒if B is R.E., A is R.E.

⇒if A is not R.E., B is not R.E.

$PISJOINT_{TM} = \{ \langle M,N \rangle | L(M) \cap L(N) \text{ is empty } \}$

f(w) = ???

ETM Sm PISJOINTM

$PISJOINT_{TM} = \{ \langle M,N \rangle | L(M) \cap L(N) \text{ is empty } \}$

 $f(w) = ???, if w = \langle M \rangle, f(w) = ???, otherwise.$

ETM Sm PISJOINTM

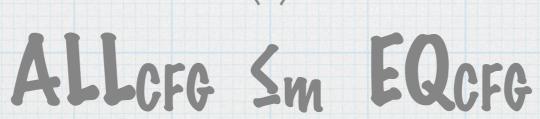
 $PISJOINT_{TM} = \{ \langle M,N \rangle | L(M) \cap L(N) \text{ is empty } \}$

f(w) = <M, EVERY >, if w = <M> f(w) = < EVERY, EVERY>, otherwise where EVERY is a TM that accepts all strings

ETM Sm PISJOINTM

$EQ_{CFG} = \{ \langle G, H \rangle | G \in H \text{ are CFGs, } L(G) = L(H) \}$

f(w) = ???



$EQ_{CFG} = \{ \langle G, H \rangle | G & H are CFGs, L(G) = L(H) \}$

f(w) = ???, if w = <G> f(w) = ???, otherwise



ALLCFG Sm EQCFG

 $EQ_{CFG} = \{ \langle G, H \rangle \mid G \in H \text{ are CFGs, } L(G) = L(H) \}$

f(<G>) = <G, EVERY >, if w = <G>, f(w) = <EVERY, NONE> , otherwise where

EVERY is a CFG that includes all strings and NONE is a CFG that includes no strings.

 \Leftrightarrow

Allefe Sm EQCFG

ETM SM ATM

ATM SM ETM

ETM SM ATM

ATM SM ETM

Given (M,w) generate (M') where on input w', M' runs M on w.

ATM SM ETM

Given (M,w) generate (M') where on input w', M' runs M on w.

* Given $w \neq \langle M, w \rangle$, generate $\langle EMPTY \rangle$, where L(EMPTY) = ϕ

ETM SM ATM

Given «M», generate «M, є» where on w, M dovetails running M on all w & accepts w if any w є L(M),

ATM SM ETM

- Given (M,w) generate (M') where on input w', M' runs M on w.
- * Given w $\neq \langle M, w \rangle$, generate $\langle EMPTY \rangle$, where L(EMPTY) = ϕ

ETM SM ATM

- Given «M», generate «M, e» where on w, M dovetails running M on all w & accepts w if any w e L(M),
- * Given w generate <ALL,&>

* Given <M,w> generate <M'> where on input

ATM SM ETM

- w', M' runs M on w.
- * Given w $\neq \langle M, w \rangle$, generate $\langle EMPTY \rangle$, where L(EMPTY) = ϕ

Turing Equivalence

ETM SM ATM

- Given «M», generate «M, e» where on w, M dovetails running M on all w & accepts w if any w e L(M),
- * Given w generate <ALL,E>

ATM SM ETM

- Given (M,w) generate (M') where on input w', M' runs M on w.
- * Given w $\neq \langle M, w \rangle$, generate $\langle EMPTY \rangle$, where L(EMPTY) = ϕ

Turing Equivalence

ETM SM ATM

- Given «M», generate «M, e» where on w, M dovetails running M on all w & accepts w if any w e L(M),
- * Given w generate <ALL,&>

ATM SM ETM

- Given (M,w) generate (M) where on input (W) M' runs M on w.
- * Given w $\neq \langle M, w \rangle$, generate $\langle EMPTY \rangle$, where L(EMPTY) = ϕ

Any non-trivial property of a Turing machine's language is

undecidable.

* ISALanguage_{TM} = ${\langle M \rangle | M \text{ is a TM and } L(M) \subseteq \Sigma^* }$

* UNRecognizable_{TM} = {<M>I M is a TM and L(M) is not recognizable }

* LITTLETM =
{(M) | M = (Q, Σ, Γ, δ, qo, qa, qr) is a TM and |Q| < 99 }</pre>

Any non-trivial property of a Turing machine's language is

undecidable.

Rice's Theorem

Suppose that L is a language with $\emptyset \subset L \subset \{\langle M \rangle \mid \langle M \rangle \text{ is a valid Turing machine } \}$

such that

if L(M) = L(N) then $\langle M \rangle \in L$ iff $\langle N \rangle \in L$

then L is undecidable.

Rice's Theorem

Suppose that L is a language with $\emptyset \subset L \subset \{\langle M \rangle \mid \langle M \rangle \text{ is a valid Turing machine } \}$

such that

if L(M) = L(N) then $\langle M \rangle \in L$ iff $\langle N \rangle \in L$

then L and L are undecidable.

Rice's Theorem

Suppose that L is a language with $\emptyset \subset L \subset \{\langle M \rangle \mid \langle M \rangle \text{ is a valid Turing machine } \}$ such that if L(M) = L(N) then $\langle M \rangle \in L$ iff $\langle N \rangle \in L$ and for all $\langle M \rangle \in L$, L(M) $\neq \phi$,

then L and L are undecidable.

Suppose that L is a language with $\emptyset \subset L \subset \{\langle M \rangle \mid \langle M \rangle \text{ is a valid Turing machine } \}$ such that if L(M) = L(N) then $\langle M \rangle \in L$ iff $\langle N \rangle \in L$

and for all $\langle \mathbf{M} \rangle \in \mathbf{L}$, L(M) $\neq \phi$,

then L and L are undecidable.

Suppose that L is a language with $\emptyset \subset L \subset \{\langle M \rangle \mid \langle M \rangle \text{ is a valid Turing machine } \}$ such that if L(M) = L(N) then $\langle M \rangle \in L$ iff $\langle N \rangle \in L$

and for all $\langle \mathbf{M} \rangle \in \mathbf{L}$, L(M) $\neq \phi$,

then L and L are undecidable.

PROOF: Show that ATM Sm L.

Suppose that L is a language with $\emptyset \subset L \subset \{\langle M \rangle \mid \langle M \rangle \text{ is a valid Turing machine } \}$ such that if L(M) = L(N) then $\langle M \rangle \in L$ iff $\langle N \rangle \in L$ and for all $\langle \mathbf{M} \rangle \in \mathbf{L}$, $\mathbf{L}(\mathbf{M}) \neq \phi$, then L and L are undecidable.

PROOF: Show that ATM Sm L.

Find a computable function $f(\langle M, w \rangle) = \langle M' \rangle$ such that if $w \in L(M)$ then $\langle M' \rangle \in L$ if $w \notin L(M)$ then $\langle M' \rangle \notin L$

Find a computable function f ($\langle M, w \rangle$) = $\langle M' \rangle$ such that if $w \in L(M)$ then $\langle M' \rangle \in L$ if $w \notin L(M)$ then $\langle M' \rangle \notin L$

Choose any $\langle M_{inL} \rangle \in L$.

Find a computable function $f(\langle M, w \rangle) = \langle M' \rangle$ such that

$$f w \in L(M)$$
 then $L(M') = L(M_{inL})$

I

if w $\notin L(M)$ then $\langle M' \rangle = \phi$

Find a computable function f ($\langle M, w \rangle$) = $\langle M' \rangle$ such that if $w \in L(M)$ then $\langle M' \rangle \in L$ if $w \notin L(M)$ then $\langle M' \rangle \notin L$

Choose any $\langle M_{inL} \rangle \in L$.

Let f = On input <M, w>, construct a TM M' which:

on input w', simulates M on w and

if M accepts w, runs Minl on w'

else rejects.

Decidable Questions?

* REVERSIBLE_{TM} = { $\langle M \rangle$ | w \in L(M) iff w^R \in L(M) }

- * REGULAR_{TM} = { $\langle M \rangle$ | L(M) is regular }
- * $PISJOINT_{TM} = \{\langle M,N \rangle | L(M) \cap L(N) \text{ is empty} \}$
- * PRIME_{TM} = { $\langle M \rangle$ | w \in L(M) \Rightarrow | w | is prime }
- * $QUAD_{TM} = \{\langle M \rangle | M runs \langle |w|^2 steps on all inputs \}$