
CS/Math 361

Announcements

Homework 9: due Friday 
Delayed office hours today - 2:30? 

Volunteer opportunity this afternoon



Twisted Histories



LComputation-History
Definition: Given a TM M = (Q , Σ, Γ, δ, q0, qaccept, qreject) 
and a string w ∈ Σ*, we define the language of 
computation histories for M on w as: 

LComputation-History(M, w) =  
{w0w1...wn | each wi is a configuration for M, 

w0 is the initial configuration for w, 
wn is a final/accept configuration, & 
each wi yields wi+1 according to δ }



LRComputation-History

Definition: Given a TM M = (Q , Σ, Γ, δ, q0, qaccept, qreject) 
and a string w ∈ Σ*, we define the language of 
computation histories for M on w as: 

LRComputation-History(M, w) =  
{w0wR1...wn | each wi is a configuration for M, 

w0 is the initial configuration for w, 
wn is a final/accept configuration,  
each wi yields wi+1 according to δ, & 
every other wi is reversed }



LRComputation-History

Definition: Given a TM M = (Q , Σ, Γ, δ, q0, qaccept, qreject) 
and a string w ∈ Σ*, we define the language of 
computation histories for M on w as: 

LRComputation-History(M, w) =  
{w0wR1...wn | some wi is not a configuration for M, 

w0 is not the initial configuration for w, 
wn is not final/accept configuration, or 
some wi does not yields wi+1, but  
every other wi is reversed }



LRComputation-History
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Proof that ALLCFG not R.E.

Assume that ALLCFG is recognized by MALL and construct a machine 
MATM that behaves as follows:  
1. On input ⟨M,w⟩: 

1.1. Construct an encoding ⟨G(M,w)⟩ for a CFG 
for the language LRComputation-History ( M, w ) 

1.2.Run MALL on ⟨G(M,w)⟩ ( and accept if it does ). 
2. If the input is not of the form ⟨M,w⟩, accept

This machine would recognize MATM which we have shown 
is impossible, so MALL must not exist and ALLCFG must not be recognizable.



DECIDABLE R.E. not R.E. not co-R.E.

ETM X

ETM X

EQCFG X

EQCFG X

EQTM X

EQTM X

ALLCFG X

ALLCFG X

ALLTM X

ALLTM X





Assume that  ETM  is recognized by  ME   and construct a machine 
MATM that behaves as follows:  
1. On input ⟨M,w⟩: 

1.1. Construct a description, ⟨M'⟩, of a TM M' that behaves as 
follows:  
On input w', simulate M on input w and: 

i. accept w' if M accepts w. 
ii. otherwise reject w’ or loop.  

1.2.Run  ME   on ⟨M'⟩ ( and accept if it does ). 
2. If the input is not of the form ⟨M,w⟩, accept

Proof that  ETM not R.E.



Computable Functions
Definition: A function f: Σ* → Σ* is computable iff there is 
a Turing machine M such that on every input w, M halts 
with f(w) on its tape.



Computable Functions
f( <M,w> ) = <M’> 

where M’ runs M on w  
and  

accepts its input w’ only if M accepts w.
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Computable Functions
f( <M,w> ) = <M’> 

where M’ runs M on w  
and  

accepts its input w’ only if M accepts w.

ATM ETM



Mapping Reducible
Definition: Language A is many-to-one reducible to language 
B if there exists a computable function f: Σ* → Σ* such that 

w ∈ A ⇔ f(w) ∈ B 

for every w ∈ Σ*. We call f a reduction, write A ≤m B and say 
that A is easier than (or just as hard as) B.
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Computable Functions
f( <M,w> ) = <M’> 

where M’ runs M on w  
and  

accepts its input w’ only if M accepts w.

ATM ETM

ATM  ≤m  ETM

A ≤m B iff there exists  
computable f: Σ* → Σ* 

such that  
w ∈ A ⇔ f(w) ∈ B



Computable Functions
f( <M,w> ) = <M’> 

where M’ runs M on w  
and  

accepts its input w’ only if M accepts w.

A ≤m B iff there exists  
computable f: Σ* → Σ* 

such that  
w ∈ A ⇔ f(w) ∈ B
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Computable Functions
f( x ) = <M’>, if x = <M,w> 

f( x ) = <EMPTY>, otherwise 
where  

L(EMPTY) = 𝜙   
M’ runs M on w and  

accepts its input w’ only if M accepts w.

A ≤m B iff there exists  
computable f: Σ* → Σ* 

such that  
w ∈ A ⇔ f(w) ∈ B
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Computable Functions
f( <M,w> ) = <M’> 

where M’ runs M on w  
and  

accepts its input w’ only if M accepts w.

ATM ETM

ATM  ≤m  ETM

A ≤m B iff there exists  
computable f: Σ* → Σ* 

such that  
w ∈ A ⇔ f(w) ∈ B



A B

f

f

f

Computable Functions

ATM  ≤m  ALLTM

f( <M,w> ) = <M’> 
where M’ runs M on w  

and  
accepts its input w’ only if M accepts w.

ATM ALLTM

A ≤m B iff there exists  
computable f: Σ* → Σ* 

such that  
w ∈ A ⇔ f(w) ∈ B
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ATM  ≤m  ALLTM

Computable Functions
f( <M,w> ) = <M’> 

where M’ runs M on w  
and  

accepts its input w’ only if M accepts w.

ATM ALLTM

A ≤m B iff there exists  
computable f: Σ* → Σ* 

such that  
w ∈ A ⇔ f(w) ∈ B





Reductio
If by assuming M decides B we can 
build M’ that decides A then ... 

➡if B is decidable, A is decidable 
➡if A is undecidable, B is undecidable



Reductio
If by assuming M decides B we can 
build M’ that decides A then ... 

➡if B is decidable, A is decidable 
➡if A is undecidable, B is undecidable 

If A ≤m B then ... 
➡if B is decidable, A is decidable 
➡if A is undecidable, B is undecidable



Reductio
If by assuming M recognizes B we can 
build M’ that recognizes A then ... 

➡if B is R.E., A is R.E. 
➡if A is not R.E., B is not R.E. 

If A ≤m B then ... 
➡if B is R.E., A is R.E. 
➡if A is not R.E., B is not R.E.



Mapping Reducible

⇔

ETM  ≤m  DISJOINTTM

DISJOINTTM = { ⟨M,N⟩ | L(M) ⋂ L(N) is empty }

f( w ) = ???



Mapping Reducible

⇔

ETM  ≤m  DISJOINTTM

DISJOINTTM = { ⟨M,N⟩ | L(M) ⋂ L(N) is empty }

f( w ) = ???, if w = <M>, 
f( w ) = ???, otherwise.



Mapping Reducible

f( w ) = <M, EVERY >, if w = <M> 
f( w ) = < EVERY, EVERY>, otherwise 

where 
EVERY is a TM that accepts all strings

⇔

ETM  ≤m  DISJOINTTM

DISJOINTTM = { ⟨M,N⟩ | L(M) ⋂ L(N) is empty }



Mapping Reducible

ALLCFG  ≤m  EQCFG

EQCFG = { ⟨G,H⟩ | G & H are CFGs, L(G) = L(H) }

f( w ) = ???

⇔



Mapping Reducible

ALLCFG  ≤m  EQCFG

EQCFG = { ⟨G,H⟩ | G & H are CFGs, L(G) = L(H) }

f( w ) = ???, if w = <G> 
f( w ) = ???, otherwise

⇔



Mapping Reducible

⇔
ALLCFG  ≤m  EQCFG

EQCFG = { ⟨G,H⟩ | G & H are CFGs, L(G) = L(H) }

f( <G> ) = <G, EVERY >, if w = <G>, 
f( w ) = <EVERY, NONE> , otherwise 

where 
EVERY is a CFG that includes all strings 

and NONE is a CFG that includes no strings.





Comparing Hardness
ETM ≤M ATM  ATM ≤M ETM



Comparing Hardness
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 ATM ≤M ETM 

Given <M,w> generate 
<M’> where on input 
w’, M’ runs M on w.



Comparing Hardness
ETM ≤M ATM  ATM ≤M ETM 

Given <M,w> generate 
<M’> where on input 
w’, M’ runs M on w. 

Given w ≠ <M,w>, 
generate <EMPTY>, 
where L(EMPTY) = 𝜙



ETM ≤M ATM 
Given <M>, generate 
<M’,ϵ> where on w’, 
M’ dovetails running 
M on all w & accepts 
w’ if any w ϵ L(M),  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ETM ≤M ATM 
Given <M>, generate 
<M’,ϵ> where on w’, 
M’ dovetails running 
M on all w & accepts 
w’ if any w ϵ L(M), 

Given w generate 
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<M’> where on input 
w’, M’ runs M on w. 
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Turing Equivalence
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Turing Equivalence

ETM ≡M ATM

ETM ≤M ATM 
Given <M>, generate 
<M’,ϵ> where on w’, 
M’ dovetails running 
M on all w & accepts 
w’ if any w ϵ L(M), 

Given w generate 
<ALL,ϵ>  

ATM ≤M ETM 

Given <M,w> generate 
<M’> where on input 
w’, M’ runs M on w. 

Given w ≠ <M,w>, 
generate <EMPTY>, 
where L(EMPTY) = 𝜙





Rice’s Theorem

Any non-trivial property of a Turing machine’s language is 
undecidable.



Trivial Pursuit

ISALanguageTM =  
              {⟨M⟩| M is a TM and L(M) ⊆Σ*} 
UNRecognizableTM =  
  {⟨M⟩| M is a TM and L(M) is not recognizable } 
LITTLETM =  
 {⟨M⟩| M = (Q ,Σ,𝛤,δ,q0,qa,qr} is a TM and |Q| < 99 }



Rice’s Theorem

Any non-trivial property of a Turing machine’s language is 
undecidable.



Rice’s Theorem

Suppose that L is a language with 
∅ ⊂ L ⊂ {⟨M⟩ | ⟨M⟩ is a valid Turing machine } 

such that  
if L(M) = L(N) then ⟨M⟩ ∈ L  iff  ⟨N⟩ ∈ L 

then L is undecidable.
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Suppose that L is a language with 
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Suppose that L is a language with 
∅ ⊂ L ⊂ {⟨M⟩ | ⟨M⟩ is a valid Turing machine } 

such that  
if L(M) = L(N) then ⟨M⟩ ∈ L  iff  ⟨N⟩ ∈ L 

and for all ⟨M⟩ ϵ L, L(M) ≠  𝜙, 
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PROOF: Show that ATM ≤m L. 



Suppose that L is a language with 
∅ ⊂ L ⊂ {⟨M⟩ | ⟨M⟩ is a valid Turing machine } 

such that  
if L(M) = L(N) then ⟨M⟩ ∈ L  iff  ⟨N⟩ ∈ L 

and for all ⟨M⟩ ϵ L, L(M) ≠  𝜙, 
then L and L are undecidable.

Find a computable function f ( <M,w> ) = <M’> such that 
if w ∈ L(M) then <M’> ∈ L 
if w ∉ L(M) then <M’> ∉ L 

PROOF: Show that ATM ≤m L. 



Find a computable function f ( <M,w> ) = <M’> such that 
if w ∈ L(M) then <M’> ∈ L 
if w ∉ L(M) then <M’> ∉ L 

Choose any <MinL> ϵ L. 
Find a computable function f ( <M,w> ) = <M’> such that 

if w ∈ L(M) then L(M’) = L(MinL) 
if w ∉ L(M) then <M’> = 𝜙 



Find a computable function f ( <M,w> ) = <M’> such that 
if w ∈ L(M) then <M’> ∈ L 
if w ∉ L(M) then <M’> ∉ L 

Choose any <MinL> ϵ L. 
Let f = On input <M, w>, construct a TM M’ which: 

on input w’, simulates M on w and 
if M accepts w, runs MinL on w’ 

else rejects.



Decidable Questions?

REVERSIBLETM = {⟨M⟩| w ∈ L(M) iff wR ∈ L(M) } 
REGULARTM = {⟨M⟩| L(M) is regular } 
DISJOINTTM = { ⟨M,N⟩ | L(M) ⋂ L(N) is empty } 
PRIMETM = {⟨M⟩| w ∈ L(M) ⇒ | w | is prime } 
QUADTM = {⟨M⟩| M runs < |w|2 steps on all inputs }




