
CS/Math 361

Announcements

Homework 9: due Friday
Delayed office hours today - 2:30?

Volunteer opportunity this afternoon

Twisted Histories

LComputation-History
Definition: Given a TM M = (Q , Σ, Γ, δ, q0, qaccept, qreject)
and a string w ∈ Σ*, we define the language of
computation histories for M on w as:

LComputation-History(M, w) =
{w0w1...wn | each wi is a configuration for M,

w0 is the initial configuration for w,
wn is a final/accept configuration, &
each wi yields wi+1 according to δ }

LRComputation-History

Definition: Given a TM M = (Q , Σ, Γ, δ, q0, qaccept, qreject)
and a string w ∈ Σ*, we define the language of
computation histories for M on w as:

LRComputation-History(M, w) =
{w0wR1...wn | each wi is a configuration for M,

w0 is the initial configuration for w,
wn is a final/accept configuration,
each wi yields wi+1 according to δ, &
every other wi is reversed }

LRComputation-History

Definition: Given a TM M = (Q , Σ, Γ, δ, q0, qaccept, qreject)
and a string w ∈ Σ*, we define the language of
computation histories for M on w as:

LRComputation-History(M, w) =
{w0wR1...wn | some wi is not a configuration for M,

w0 is not the initial configuration for w,
wn is not final/accept configuration, or
some wi does not yields wi+1, but
every other wi is reversed }

LRComputation-History

bad wo

bad wn

bad
format

bad
pair

ϵ,ϵ ; ϵ

ϵ,ϵ ; ϵ
ϵ,ϵ ; ϵ

ϵ,ϵ ; ϵ

S

($𝛤 * Q 𝛤 *)*$

$Q0w$

$𝛤 * Qaccept 𝛤 *$

wiwRi+1$
guess
pair wRiwi+1$

Proof that ALLCFG not R.E.

Assume that ALLCFG is recognized by MALL and construct a machine
MATM that behaves as follows:
1. On input ⟨M,w⟩:

1.1. Construct an encoding ⟨G(M,w)⟩ for a CFG
for the language LRComputation-History (M, w)

1.2.Run MALL on ⟨G(M,w)⟩ (and accept if it does).
2. If the input is not of the form ⟨M,w⟩, accept

This machine would recognize MATM which we have shown
is impossible, so MALL must not exist and ALLCFG must not be recognizable.

DECIDABLE R.E. not R.E. not co-R.E.

ETM X

ETM X

EQCFG X

EQCFG X

EQTM X

EQTM X

ALLCFG X

ALLCFG X

ALLTM X

ALLTM X

Assume that ETM is recognized by ME and construct a machine
MATM that behaves as follows:
1. On input ⟨M,w⟩:

1.1. Construct a description, ⟨M'⟩, of a TM M' that behaves as
follows:
On input w', simulate M on input w and:

i. accept w' if M accepts w.
ii. otherwise reject w’ or loop.

1.2.Run ME on ⟨M'⟩ (and accept if it does).
2. If the input is not of the form ⟨M,w⟩, accept

Proof that ETM not R.E.

Computable Functions
Definition: A function f: Σ* → Σ* is computable iff there is
a Turing machine M such that on every input w, M halts
with f(w) on its tape.

Computable Functions
f(<M,w>) = <M’>

where M’ runs M on w
and

accepts its input w’ only if M accepts w.

A B

f

f

f

Computable Functions
f(<M,w>) = <M’>

where M’ runs M on w
and

accepts its input w’ only if M accepts w.

ATM ETM

Mapping Reducible
Definition: Language A is many-to-one reducible to language
B if there exists a computable function f: Σ* → Σ* such that

w ∈ A ⇔ f(w) ∈ B

for every w ∈ Σ*. We call f a reduction, write A ≤m B and say
that A is easier than (or just as hard as) B.

A B

f

f

f

A B

f

f

f

Computable Functions
f(<M,w>) = <M’>

where M’ runs M on w
and

accepts its input w’ only if M accepts w.

ATM ETM

ATM ≤m ETM

A ≤m B iff there exists
computable f: Σ* → Σ*

such that
w ∈ A ⇔ f(w) ∈ B

Computable Functions
f(<M,w>) = <M’>

where M’ runs M on w
and

accepts its input w’ only if M accepts w.

A ≤m B iff there exists
computable f: Σ* → Σ*

such that
w ∈ A ⇔ f(w) ∈ B

A B

f

f

f

#$!## ϵ ATM

#$!##

Computable Functions
f(x) = <M’>, if x = <M,w>

f(x) = <EMPTY>, otherwise
where

L(EMPTY) = 𝜙
M’ runs M on w and

accepts its input w’ only if M accepts w.

A ≤m B iff there exists
computable f: Σ* → Σ*

such that
w ∈ A ⇔ f(w) ∈ B

A B

f

f

f
#$!##

A B

f

f

f

Computable Functions
f(<M,w>) = <M’>

where M’ runs M on w
and

accepts its input w’ only if M accepts w.

ATM ETM

ATM ≤m ETM

A ≤m B iff there exists
computable f: Σ* → Σ*

such that
w ∈ A ⇔ f(w) ∈ B

A B

f

f

f

Computable Functions

ATM ≤m ALLTM

f(<M,w>) = <M’>
where M’ runs M on w

and
accepts its input w’ only if M accepts w.

ATM ALLTM

A ≤m B iff there exists
computable f: Σ* → Σ*

such that
w ∈ A ⇔ f(w) ∈ B

A B

f

f

f

ATM ≤m ALLTM

Computable Functions
f(<M,w>) = <M’>

where M’ runs M on w
and

accepts its input w’ only if M accepts w.

ATM ALLTM

A ≤m B iff there exists
computable f: Σ* → Σ*

such that
w ∈ A ⇔ f(w) ∈ B

Reductio
If by assuming M decides B we can
build M’ that decides A then ...

➡if B is decidable, A is decidable
➡if A is undecidable, B is undecidable

Reductio
If by assuming M decides B we can
build M’ that decides A then ...

➡if B is decidable, A is decidable
➡if A is undecidable, B is undecidable

If A ≤m B then ...
➡if B is decidable, A is decidable
➡if A is undecidable, B is undecidable

Reductio
If by assuming M recognizes B we can
build M’ that recognizes A then ...

➡if B is R.E., A is R.E.
➡if A is not R.E., B is not R.E.

If A ≤m B then ...
➡if B is R.E., A is R.E.
➡if A is not R.E., B is not R.E.

Mapping Reducible

⇔

ETM ≤m DISJOINTTM

DISJOINTTM = { ⟨M,N⟩ | L(M) ⋂ L(N) is empty }

f(w) = ???

Mapping Reducible

⇔

ETM ≤m DISJOINTTM

DISJOINTTM = { ⟨M,N⟩ | L(M) ⋂ L(N) is empty }

f(w) = ???, if w = <M>,
f(w) = ???, otherwise.

Mapping Reducible

f(w) = <M, EVERY >, if w = <M>
f(w) = < EVERY, EVERY>, otherwise

where
EVERY is a TM that accepts all strings

⇔

ETM ≤m DISJOINTTM

DISJOINTTM = { ⟨M,N⟩ | L(M) ⋂ L(N) is empty }

Mapping Reducible

ALLCFG ≤m EQCFG

EQCFG = { ⟨G,H⟩ | G & H are CFGs, L(G) = L(H) }

f(w) = ???

⇔

Mapping Reducible

ALLCFG ≤m EQCFG

EQCFG = { ⟨G,H⟩ | G & H are CFGs, L(G) = L(H) }

f(w) = ???, if w = <G>
f(w) = ???, otherwise

⇔

Mapping Reducible

⇔
ALLCFG ≤m EQCFG

EQCFG = { ⟨G,H⟩ | G & H are CFGs, L(G) = L(H) }

f(<G>) = <G, EVERY >, if w = <G>,
f(w) = <EVERY, NONE> , otherwise

where
EVERY is a CFG that includes all strings

and NONE is a CFG that includes no strings.

Comparing Hardness
ETM ≤M ATM  ATM ≤M ETM

Comparing Hardness
ETM ≤M ATM  ATM ≤M ETM

Given <M,w> generate
<M’> where on input
w’, M’ runs M on w.

Comparing Hardness
ETM ≤M ATM  ATM ≤M ETM

Given <M,w> generate
<M’> where on input
w’, M’ runs M on w.

Given w ≠ <M,w>,
generate <EMPTY>,
where L(EMPTY) = 𝜙

ETM ≤M ATM
Given <M>, generate
<M’,ϵ> where on w’,
M’ dovetails running
M on all w & accepts
w’ if any w ϵ L(M),  

ATM ≤M ETM

Given <M,w> generate
<M’> where on input
w’, M’ runs M on w.

Given w ≠ <M,w>,
generate <EMPTY>,
where L(EMPTY) = 𝜙

Comparing Hardness

ETM ≤M ATM
Given <M>, generate
<M’,ϵ> where on w’,
M’ dovetails running
M on all w & accepts
w’ if any w ϵ L(M),

Given w generate
<ALL,ϵ>  

ATM ≤M ETM

Given <M,w> generate
<M’> where on input
w’, M’ runs M on w.

Given w ≠ <M,w>,
generate <EMPTY>,
where L(EMPTY) = 𝜙

Comparing Hardness

Turing Equivalence

ETM ≡M ATM

ETM ≤M ATM
Given <M>, generate
<M’,ϵ> where on w’,
M’ dovetails running
M on all w & accepts
w’ if any w ϵ L(M),

Given w generate
<ALL,ϵ>  

ATM ≤M ETM

Given <M,w> generate
<M’> where on input
w’, M’ runs M on w.

Given w ≠ <M,w>,
generate <EMPTY>,
where L(EMPTY) = 𝜙

Turing Equivalence

ETM ≡M ATM

ETM ≤M ATM
Given <M>, generate
<M’,ϵ> where on w’,
M’ dovetails running
M on all w & accepts
w’ if any w ϵ L(M),

Given w generate
<ALL,ϵ>  

ATM ≤M ETM

Given <M,w> generate
<M’> where on input
w’, M’ runs M on w.

Given w ≠ <M,w>,
generate <EMPTY>,
where L(EMPTY) = 𝜙

Rice’s Theorem

Any non-trivial property of a Turing machine’s language is
undecidable.

Trivial Pursuit

ISALanguageTM =  
 {⟨M⟩| M is a TM and L(M) ⊆Σ*}
UNRecognizableTM =  
 {⟨M⟩| M is a TM and L(M) is not recognizable }
LITTLETM =  
 {⟨M⟩| M = (Q ,Σ,𝛤,δ,q0,qa,qr} is a TM and |Q| < 99 }

Rice’s Theorem

Any non-trivial property of a Turing machine’s language is
undecidable.

Rice’s Theorem

Suppose that L is a language with
∅ ⊂ L ⊂ {⟨M⟩ | ⟨M⟩ is a valid Turing machine }

such that
if L(M) = L(N) then ⟨M⟩ ∈ L iff ⟨N⟩ ∈ L

then L is undecidable.

Rice’s Theorem

Suppose that L is a language with
∅ ⊂ L ⊂ {⟨M⟩ | ⟨M⟩ is a valid Turing machine }

such that
if L(M) = L(N) then ⟨M⟩ ∈ L iff ⟨N⟩ ∈ L

then L and L are undecidable.

Suppose that L is a language with
∅ ⊂ L ⊂ {⟨M⟩ | ⟨M⟩ is a valid Turing machine }

such that
if L(M) = L(N) then ⟨M⟩ ∈ L iff ⟨N⟩ ∈ L

and for all ⟨M⟩ ϵ L, L(M) ≠ 𝜙,
then L and L are undecidable.

Rice’s Theorem

Suppose that L is a language with
∅ ⊂ L ⊂ {⟨M⟩ | ⟨M⟩ is a valid Turing machine }

such that
if L(M) = L(N) then ⟨M⟩ ∈ L iff ⟨N⟩ ∈ L

and for all ⟨M⟩ ϵ L, L(M) ≠ 𝜙,
then L and L are undecidable.

Suppose that L is a language with
∅ ⊂ L ⊂ {⟨M⟩ | ⟨M⟩ is a valid Turing machine }

such that
if L(M) = L(N) then ⟨M⟩ ∈ L iff ⟨N⟩ ∈ L

and for all ⟨M⟩ ϵ L, L(M) ≠ 𝜙,
then L and L are undecidable.

PROOF: Show that ATM ≤m L.

Suppose that L is a language with
∅ ⊂ L ⊂ {⟨M⟩ | ⟨M⟩ is a valid Turing machine }

such that
if L(M) = L(N) then ⟨M⟩ ∈ L iff ⟨N⟩ ∈ L

and for all ⟨M⟩ ϵ L, L(M) ≠ 𝜙,
then L and L are undecidable.

Find a computable function f (<M,w>) = <M’> such that
if w ∈ L(M) then <M’> ∈ L
if w ∉ L(M) then <M’> ∉ L

PROOF: Show that ATM ≤m L.

Find a computable function f (<M,w>) = <M’> such that
if w ∈ L(M) then <M’> ∈ L
if w ∉ L(M) then <M’> ∉ L

Choose any <MinL> ϵ L.
Find a computable function f (<M,w>) = <M’> such that

if w ∈ L(M) then L(M’) = L(MinL)
if w ∉ L(M) then <M’> = 𝜙

Find a computable function f (<M,w>) = <M’> such that
if w ∈ L(M) then <M’> ∈ L
if w ∉ L(M) then <M’> ∉ L

Choose any <MinL> ϵ L.
Let f = On input <M, w>, construct a TM M’ which:

on input w’, simulates M on w and
if M accepts w, runs MinL on w’

else rejects.

Decidable Questions?

REVERSIBLETM = {⟨M⟩| w ∈ L(M) iff wR ∈ L(M) }
REGULARTM = {⟨M⟩| L(M) is regular }
DISJOINTTM = { ⟨M,N⟩ | L(M) ⋂ L(N) is empty }
PRIMETM = {⟨M⟩| w ∈ L(M) ⇒ | w | is prime }
QUADTM = {⟨M⟩| M runs < |w|2 steps on all inputs }

