CS 361 Meeting 25 — 4/27/20

A Recognizable, but Undecidable Language
(Click for video)

. Last class, I presented a brief, somewhat inscrutable proof that the
language

Apry = {(M)w| (M) is a binary encoding of a binary TM, &
we L(M). } C{0,1}*

which is just the language Arjs restricted to Turing machine’s with
binary input alphabets, is not decidable.

Theorem: Apgr,s is undecidable.

Proof: Suppose that Aprys was decidable. Then there
would exist some TM N that always halted such that
ABTM = L(N)

e Given N, we could construct another TM D which on
any input w, made a copy of w after its original input
to form ww and then ran N on the result. This machine
would decide the language

L(D) = {(M)| (M) is an encoding of a binary TM
& (M) e L(M). }

e Now, suppose that we alter D just a bit to produce a
new machine named D. D will be identical to D except
its accept and reject states will be interchanged. Since
all of these machines are deciders, we can say

L(D) = {{M)]| (M) is not an encoding of a binary TM
or (M) ¢ L(M). }

Click here to view the slides for this class

e Now, consider what happens when we apply D to its
own description. That is, we apply D to the input (D).
Since (D) is clearly an encoding of a binary TM, we can
see that < D >€ L(D) =< D >¢ L(D).

e This is nonsense! Or better yet a contradiction. As a
result, we can state that our original assumption that

Apryr was decidable must be false.

What Diagonal?
(Click for video)

1. The proof that Agpjs is undecidable is short and each step is quite

simple and undebatable. At the end, however, it feels a bit more like
a magic trick than a proof. Therefore, it is worth taking some time to
understand what it says in a different way.

. The proof that Agrys is undecidable is described as a diagonalization

proof.

3. You may (or may not!) recall that on the first day of class we used

a diagonalization argument to show that there were more reals than
integers.

e We assumed that there was a mapping from the natural numbers
to the reals. That is, that there was some list that included every
real number in such a way that we could identify some real as
number 1, some real as number 2, and so on.

e We then described a real number that could not be in this list
by stipulating that we would select the ith digit of the decimal
expansion of our number to be different from the ith bit of the
7th number in our list of reals.

e Since a real number constructed in this way could not be in our
list, this contradicted the assumption that such a list could exist.

e To see the diagonal in this argument, consider the following ta-
ble which is supposed to show the first few digits of each of the
first few real numbers in some potential numbered list of all real
numbers.

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b41a4845-e4b0-4e62-907e-aba2014ed4c6
http://www.cs.williams.edu/~tom/courses/361/notes/Lect26slides.pdf
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=850e6e6e-0304-493c-a2b3-aba2015379e1

1 2 3 4 5 6 7
1) [3 114159276
2) [2 7118 28 138
3) |2 9 9 7 9 2 4 5
4) [1 1142 135
5) |1 7 3 2 0 5 0 8
6) |0 3 3 3 3 3 3 3
7 [4]. 0 0 0 0 0 0 0
8) | I|.|dg1 |dga|dss|dsa|dgs|dse | dsy

The ¢ digit of the number we construct to show that such a table
cannot contain every real number is chosen to be different from
d; ;, the ith digit of the ith number. These are the numbers found
along the diagonal of this table (if you ignore any portion of one
of the real numbers shown before the decimal point).

e Note that it is not necessary for each real to appear just once in
the purported enumeration of all reals to make this work. Even
if some one real number appeared infinitely often, the argument
would still work as long as we assumed every real appeared at
least once.

4. The machine D we constructed in our proof that Apgrys is undecidable

can be viewed as diagonalizing over a list of all TMs in the same way
we formed a real number by diagonalizing over a purported list of all
reals.

. We can imagine an infinite table whose rows correspond to TMs in
some ordering and whose columns correspond to binary encodings of
these same Turing machines.

(M) (M3) (Ms3) (Myg) (M5) (Ms)

M; | reject reject reject reject | reject | reject

My | reject | reject reject reject reject | reject

Ms | accept reject | accept reject reject | accept

My | accept accept accept | accept | accept | accept

Ms | reject reject reject reject | reject | reject
Mg | reject accept reject accept | reject | reject
M7 | accept | accept reject reject reject | accept

Mg | reject accept reject accept | reject | accept

Each cell indicates whether the TM for the row accepts the input cor-
responding to the encoding of the TM for that column.

. The machine D we described in our proof that Appjs is undecidable

corresponds to the list of accept /reject results listed along the diagonal
of this table (all shown in bold font).

. If the machine D we described in our proof by contradiction existed, its

language L(D) would be described by the opposite of the sequence of
“reject”s and “accept”s found along the diagonal of this table. Thus,
it will be different from every row of the table in at least one position,
but all TMs are included in the rows of this table so no such TM could
exist,.

. Unlike the diagonalization proof that Cantor used to show that the

reals were not countable, the construction of the machine D does not
lead to the conclusion that the set of TMs cannot be enumerated. We
know that TMs can be enumerated! Instead, it leads to the conclusion
that D cannot be part of the list of all TMs. That is, D does not exist.

Reduction
(Click for video)

. With regular languages and context-free languages, the appropriate

pumping lemma was used over and over again to show that languages
did not belong to the class in question.

. The diagonalization technique is not used repeatedly like the pump-

ing lemmas. Instead, we use the fact that Aprps is now known to
be recognizable but undecidable together with closure properties and
reductions to show almost all other similar results.

. As a first example, we can show that it is not necessary to restrict our

attention to machines with binary input alphabets encoded in binary.
Instead, we can consider the broader language.

Appy = {(M,w) | M is a TM and w € L(M)}

e Suppose that Arps were decidable. In this case, there would be
some machine M that decided Apj,.

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=e8106e07-f770-49c3-a2f3-aba201566804

e The definitions of both A7,s and A1 would include schemes for

encoding TM descriptions using a finite input alphabet. Suppose
we constructed a machine M’ with a binary input alphabet that
first rejected its input if it was not a valid binary encoding of a
binary TM and its input, (B)w using the scheme associated with
Apryr. Otherwise, it would translate its input into an encoding
of the same TM M using the encoding for A7y and then run M.

Reductio ad Nauseum
(Click for video)

1. The reduction technique used to extend our knowledge that Appps is
undecidable to also knowing that Arjs is undecidable can be applied
to a wide range of questions about decidable languages.

In general:

e Since we assumed M decided Arp;, M’ would have to decide
Aprar- We just proved, however, that it is impossible to decide
Aprym. Based on this contradiction, we can conclude that no
decider for App; exists. That is, we have shown that Apjps is
undedicable.

4. Using diagonalization and reduction, we have now shown that Apras
and A7y, are not decidable, but both of these languages are recogniz-
able.

5. The last bubble in our Venn diagram that we need to fill with an
example is the area for languages that are not recognizable. This turns
out to be easy.

6. Earlier I pointed out that if both a language and its complement are
recognizable then they must both also be decidable.

e If both A and A are recognizable, they must be recognized by
some pair of machines M and M.

e We can build a machine that simulates both of these machines in
parallel on the same input (it should be easy to see how to do this
on a two-tape TM).

e We can then decide A by accepting if the simulation of M accepts
and rejecting if the simulation of M accepts. One of the two must
happen eventually.

7. As a result, now that we know that Agry and Apps are not decidable

we can immediately conclude that Agpys and Apys are not recogniz-
able.

If by assuming a Turing machine M decides some language
B, we can describe how to build another Turing machine M’
that decides A then:

e if B is known to be decidable then A must also be de-
cidable, and

e if A is know to be undecidable, then B must also be
undecidable.

2. It can also be used to show that a language is or is not recognizable
since:

If by assuming a Turing machine M recognizes some lan-
guage B, we can describe how to build another Turing ma-
chine M’ that recognizes A then:

e if B is known to be recognizable then A must also be
recognizable, and

e if A is know to not be recognizable, then B must also
not be recognizable.

3. As another example of reduction, consider how we can show where:

Epy = {(M)| M is a TM and L(M) = 0}

fits in our classification scheme.

4. It should be fairly clear that the complement of this language

Ery = {(M)|M isa TM and L(M) # 0}

is at least recognizable.

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=1c92e7a0-772d-4ed8-8df2-aba300f17959

e A machine could recognize descriptions of TMs with non-empty
languages by simulating instances of the machine on more and
more possible inputs (using the dovetailing technique discussed
in our explanation of recursively enumerable languages). If any
of these concurrent simulations found a string that was accepted,
the TM description would be accepted.

5. If both Erp; and Epys are recognizable then they must both be decid-

able. This seems unlikely, so it seems likely that Er)s is unrecogniz-
able. We could demonstrate this by either showing that E7js is not
decidable, or by using a reduction to directly show that Epj; is not
recognizable. We will take the second approach.

. Assume that Epjs is recognized by some TM Mpg. We will show that
we could use Mg as a subroutine to construct a larger machine Mz—
that recognizes A7js. Since we know that Azjs is not recognizable,
we can then conclude that Mg must not actually exist and therefore
Er)s is not recognizable.

7. Consider the following description of a potential machine M——

™'

e On any input that is not of the form < M,w > (i.e. a valid
encoding of a Turing machine and input), accept the inputH

e On input < M, w >, construct a description of a new machine M’
that behaves as follows:

— On any input w’, ignore w’ and instead simulate M on w. If
M accepts w, then accept w’, otherwise loop or reject just as
the simulation does.

e Use Mp, the machine that recognizes Epjs as a subroutine by
applying it to the description of the new machine M'. If Mg
accepts this machine’s description, accept < M, w >, otherwise
reject.

8. The machine we have just described would recognize Ar)s because the

language of the machine M’ we construct for the input < M, w > will
be empty exactly when w ¢ L(M) which is exactly when < M, w >¢€
App. We know that this is impossible. Therefore, the assumption that
FErpyy is recognizable must be false. Epjp; must not be recognizable.

A Closer Look
(Click for video)

And a Little Bit More
(Click for video)

. I want to explore the structure of the proof that Ep,s is not recogniz-

able very carefully. Reduction is such an important proof technique in
this context that I want to make sure you are all clear about how the
proof work.

e This proof involve four different Turing machines and/or their
descriptions. Keeping the roles of these machines very clear in
your mind is essential to understanding the proof.

e The first machine, Mg is what we assume to exist based on the
(false) assumption that E7js is recognizable. We do not assume
anything about the structure of this machine. We better not
because we believe it cannot exist!

o M A s a machine we describe how to construct that would
accomplish something we know is impossible to do by exploiting
the (false) assumption that Mg exists. In most proofs of this form,
the last thing the impossible machine we are trying to construct

(M7 in this case) will do is run Mg (or its equivalent).

e As a somewhat silly analogy to illustrate the relationship between
these two machines, think about “Mechanical Turk” — not Ama-
zon Mechanical Turk but the device that inspired Amazon to use
this name for its service.

!This may seem counter-intuitive, but recall that because Aras only includes strings
of the form < M,w >, a machine that recognizes its complement must accept all such
badly formed inputs.

— The Mechanical Turk was a elaborate hoax/magic trick con-
structed almost 250 years ago.

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=9e7a5305-7337-4923-9082-aba300f592ca
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=7cadfe42-0d6e-4997-ab91-aba300f8e58f

— It appeared to be a machine that could play chess. It included
a mechanized model dressed in Turkish garb with a movable
arm. The model was seated at a large desk with a chess
board on top and mysterious gears and other mechanisms
inside that appeared to “compute” the Turks moves.

— In fact, the mechanisms inside did nothing more that provide
room in the desk for the human who was really controlling
the model to hide.

— The person inside is like the first TM in our list of four TMs
involved in this (and most) reduction proofs. Even though
the point of the proof is to show this machine could not ex-
ist, in our construction we are relying on it to actually do
the hard work of implementing the “outer machine” which
appears to be able to do the impossible (recognize Mm or
the equivalent).

— The best part about this analogy is the recognition that espe-
cially for its time, the construction of the turk was something
of a bit of magic. To pull off this illusion, the designer had
to build complex mechanisms that would enable the person
hiding inside to see the other player’s moves and to control
the model to make its own moves.

— Similarly, in these reduction proofs, the trick is really the
process of finding a way to convert any input provided to the
“outer” machine (the one that would solve Mz—), into a
suitable input to the “inner” machine (the one we want to
prove cannot exist).

e Given the Turk analogy, the last two machines in our proof that

Mg is not recognizable (and in all similar proofs) are all about
providing the linkage between the outer machine and the inner
machine.

M isn’t really "a” machine. It can actually be any machine. We
are trying to show that we could construct M7 — if Mg existed.
Mm takes an input composed of the description of a Turing
machine and of a possible input to that Turing Machine. M is

the name we use to refer to the machine described in some input

to Mm as we try to describe how Mm would process its input.
We never actually run or simulate M. Instead, we simply process
its encoded description in various ways.

M’ is another machine we never actually run. Instead we argue
that Mm would be able to construct a description of M’ (i.e.,
< M’ >) on its tape. The form of this machine depends on
the input to Mm in such a way that < M’ > will belong to
the language of Mg exactly when the input to Mm belongs to

