
CS 361 Meeting 22 — 4/20/20

Equivalence of 1 and Multi-tape Turing Machines
(Click for video)

1. We can give a formal definition of how a multitape TM differs from a
single tape TM..

Definition: A n-tape Turing machine is a 7-tuple
(Q,Σ,Γ, δ, q0, qaccept, qreject), where

Q is a finite set of states,

Σ is a finite input alphabet (not containing the blank sym-
bol),

Γ is a finite tape alphabet which is a superset of Σ including
the blank symbol,

δ : Q× Γn → Q× Γn × {Left,Right}n is the transition
function,

q0 is the start state,

qaccept is the accept state, and

qreject 6= qaccept is the reject state.

2. We can show that a multi-tape TM is no more powerful than a single-
tape TM. To do this, we must show that single-tape TM can simulate
the computation of any multi-tape TM. In particular, since we are
interested in TMs as deciders, what I really want to show is that the
sets of languages recognized and decided by multi-tape TMs and by
single-tape TMs are identical.

3. The approach usually taken to establish such a theorem is to show how
each of the two models of computation could simulate the other.

• When we showed that NFAs were of equivalent power to DFAs,
we showed that an NFA could recognize any language recognized
by a DFA (trivially, since the DFA is an NFA), and that any
language recognized by an NFA could be recognized by a DFA
(using the subset construction).

Click here to view the slides for this class

• The proof that a 2-stack PDA could simulate a TM by keeping
the two pieces of the tape in each TM configuration in its two
stacks was another, similar example.

4. In the examples of such simulations we have seen before (i.e., the
NFA-DFA and the 2PDA-PDA equivalences), the machine that did
the simulating was close enough to the machine being simulated that
the simulator took one step (or maybe two!) for each step the simulated
machine took.

5. Our simulation of a multi-tape TM on a single-tape TM will be dif-
ferent. The single-tape TM will have to take many steps to simulate
each step of the multi-tape machine.

6. So, our general task is to describe a general procedure by which given
an n-tape TM

MN = (Q,Σ,Γ, δ, q0, qaccept, qreject)

we can construct a 1-tape TM

M1 = (Q′,Σ,Γ′, δ′, q′0, q
′
accept, q

′
reject)

such that
L(M1) = L(MN)

and M1 halts on w iff MN halts on w .

7. I will instead use a single-tape TM with a tape alphabet that is much
bigger than the alphabet of the machine it is simulating. The alphabet
of the simulator will include n-tuples of characters from the alphabet
of the simulated machine so that the symbol on the ith square of the
single-tape simulator can represent all of the symbols at position i
on the N tapes of the simulated machine. In addition, the alphabet
will allow the simulator to mark any of the symbols in these tuples to
indicate the symbol currently under each of the N tape heads of the
simulated machine.

8. The simulating machine’s alphabet gets a bit more complicated than
this because, initially, its tape will contain the input written using

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3b7ffd65-6906-472f-9aeb-ab9c00e400d3
http://www.cs.williams.edu/~tom/courses/361/notes/Lect22slides.pdf

symbols in Σ. The initial steps performed by the simulator will be
to scan its input from left to right replacing each x in the input with
(x, , , ...,) with the spaces representing the contents of the other N−1
simulated tapes.

As a result, to simulate an N-tape machine with alphabet Γ, we will
use a single-tape machine with alphabet Γ′ = Σ ∪ (Γ× {′, ε})N .

q

a b' a a b a a a
b b a b a' a b b . . .
a' a b b b a b a

CONTROL

• Remember that the real goal here is to fit the contents of N tapes
onto one. There are many ways of doing this.

• In the book, Sipser gives a construction in which the contents of
N tapes is kept on one tape by first writing the contents of the
first tape with a special mark on the symbol that is under the first
tape head. This is followed by a special marker and the contents
of the second tape. This is followed by another maker and the
third tape, and so on.

9. Given our approach to encoding N tapes on 1, we still have our work
cut out for us. We need to design M1 in such a way that it can simulate
each state transition made by MN . M1 will normally require many
steps/transitions to simulate a single transition made by MN .

• To appreciate this, suppose that M1 was simulating a 3-tape TM
M3, was in the configuration shown above, and that the transition

function for M3 included

δ(q, b, a, a) = (qk, a, a, b, L,R,R)

• In this case, M1 would need to update its tape as shown below
to update its encoding of M3’s configuration appropriately (Note
that the actual position of M1’s tape head is irrelevant since the
primed symbols on the tape encode the positions of M3’s heads.):

q

a b' a a b a a a
b b a b a' a b b . . .
a' a b b b a b a

CONTROL

a' a a a b a a a
b b a b a a' b b . . .
b a' b b b a b a

• This involves changing the symbols written on positions 1, 2, 5,
and 6 on M1’s tape. This cannot be done in one step. Instead,
M1 will go through many steps and possibly many states to make
the necessary changes on its tape.

10. To get a sense for what the set of states M1 will need to accomplish
this, suppose instead that you had to write a Java program to do this
simulation.

• To keep things simple, think about a 3-tape machine rather than
an N-tape machine.

2

• Assume that the Java program will use three “infinite” arrays of
characters to represent the tapes:

private char [] tape1 = new char[∞];

private char [] tape2 = new char[∞];

private char [] tape3 = new char[∞];

• Assume that the Java program will define a method like the one
shown below to perform all the steps needed to make one tran-
sition given as parameters the elements of a tuple of the form
(qk, a, a, b, L,R,R) that describes the transition.

public void applyDelta(

int newState,

char write1, char write2, char write3,

char move1, char move2, char move3) {

char underHead1, underHead2, underHead3;

for(int p = 0; char[p] != ’\ ’; p++) {

if (tape1[p] is marked) {

tape1[p] = write1;

if (move1 = ’R’) {

underHead1 = tape1[p+1];

tape1[p+1] = marked copy of tape1[p+1];

}else{

underHead1 = tapei[p-1];

tape1[p-1] = marked copy of tape1[p-1];

}

}

if (tape2[p] is marked) {

...

}

}

}

• This code is meant to be illustrative rather than correct or com-
plete.

• The idea is that the method makes a pass through the elements
of the arrays that represent the 3-tapes of the simulated machine
looking for the positions of the tape heads. When it finds one,
it updates the contents appropriately and, depending on whether
the transition function says the head should move left or right,
put a mark on the appropriate adjacent array element. It also
remembers the newly marked letters using the variables under-
Head1, underHead2, and underHead3, since it will need to know
their values to determine the simulated machine’s next transition.

11. The technique (trick?) we will use to build a TM that can implement
the same algorithm as this Java code is to use for our states tuples
that can encode the values of the parameters and local variables used
in the program.

• For the N-tape version, we need for our state tuple to include a
new state from the simulated machine’s state set, a sequence of
N symbols to be written by the three tape heads, a sequence of
N directions the tape heads should move, and a sequence used to
remember the N symbols under the new tape head positions.

• With this in mind, we might use a state set of the form:

Q′ = Q× ΓN × {L,R}N × (Γ ∪ {?})N × ...

• The intent here is that if q′ ∈ Q′, then

q′ = (qk,W,M,U, ...) where
qk ∈ Q is the state the simulated machine is entering,
W = (w1, w2, ...wn) & wi ∈ Γ is the symbol the ith

tape head should write
M = (m1,m2, ...mn) & mi ∈ {L,R} is the direction the

ith tape head should move
U = (u1, u2, ...un) & either ui ∈ Γ is the new symbol

under the ith tape head or
ui = ? if this symbol is not
yet known

• We left the ... in our description of this set of states to suggest
that we could easily add more information. In particular, our

3

machine will need a way to know whether it is just sweeping left
to right looking for head positions or whether it has found one and
is currently wiggling back a step to simulate one head moving left.
We can easily keep track of such things by adding components to
our state tuple.

12. Using these ideas, we can design a single tape TM to simulate any
n-tape TM. Thus, adding extra tapes does not add any extra power.

Nondeterministic Turing Machines
(Click for video)

1. The next extension we will explore is the addition of nondeterminism
to the Turing machine model.

Definition: A nondeterministic Turing machine is a 7-tuple
(Q,Σ,Γ, δ, q0, qaccept, qreject), where

Q is a finite set of states,

Σ is a finite input alphabet (not containing the blank sym-
bol),

Γ is a finite tape alphabet which is a superset of Σ including
the blank symbol,

δ : Q× Γ→ P(Q× Γ× {Left,Right}) is the transition
function,

q0 is the start state,

qaccept is the accept state, and

qreject 6= qaccept is the reject state.

We say that a nondeterministic TM accepts an input w if and only if
there is some sequence of configurations in which each configuration
yields the following configuration that starts with the initial configu-
ration (q0, ε, w) and ending with a configuration in qaccept.

2. The diagram below shows how non-determinism could be used to sim-
plify the task of converting an input of the form ww′ into the form
w#w′ (for further processing by a machine like the one Sipser presents
that recognizes w#w).

S

1 → 1, R

0 → 0, R

H0

0 → #, R

1 → #, R

H1

1 → 0, R

0 → 1, R

1 → 1, R

0 → 0, R

R

_ → 0, R

_ → 1, R

• This machine sits in the state S moving right through the as and
bs on the tape for as long as it feels like..

• It nondeterministically guesses that it is at the midpoint, writes
a # in place of the character it was scanning and moved to state
A or state B to remember the character that was replaced.

• It then bounces back and forth between states A and B, replacing
each symbol on the tape by the preceding symbol while always
ending up in the state that will remember the replaced symbol.

• When it finds the end of the tape, it writes the last preceding
symbol over the space and moves to state R (for ready).

• Assuming it correctly guessed when to transition out of state S,
the contents of the tape will now match the input with a # in-
serted in the middle. In particular, if state R of this machine is
connected to a machine that moves the input head to the left and
then behaves like Sipser’s w#w machine, it will be possible to
reach the accept state iff the original input was of the form ww.

4

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=c3dbfbbe-88da-4605-b8ca-ab9c00ee921a

3. We can visualize the possible executions of a nondeterministic TM as
a possibly infinite tree in which each node is a configuration such that:

• The root is the initial configuration,

• Each configuration in the tree yields exactly the set of configura-
tions that correspond to its children.

For example, The machine shown above would have the computation
tree shown below when applied to the input abab:

(ε, S, 0101)

(0, S, 101) (#, H0, 101)

(01, S, 01) (0#, H1, 01) (#0, H1, 01)

(#01, H0, 1)(0#1, H0, 1)(010, S, 1) (01#, H0, 1)

(0#10, H1,)(01#0, H1,)(0101, S,) (010#, H1,) (#010, H1,)

(0#101, R,)(01#01, R,)(010#1, R,) (#0101, R,)

4. A nondeterministic TM recognizes a language L if the computation
tree for a string w contains an accepting configuration as one of its
leaves iff w ∈ L. A nondeterministic TM decides a language L if all of
its computation trees are finite and the computation tree for a string
w contains an accepting configuration as one of its leaves iff w ∈ L.

Deterministic TMs are as powerful as
Nondeterministic TMs

(Click for video)

1. To show that nondeterminism does not increase the power of the Turing
machine model we need to describe a general procedure by which given
a nondeterministic TM

N = (Q,Σ,Γ, δ, q0, qaccept, qreject)

we can construct a deterministic TM

D = (Q′,Σ,Γ′, δ′, q′0, q
′
accept, q

′
reject)

such that
L(N) = L(D)

and D halts on w iff all of N ’s possible computations on w are finite
(i.e., its computation tree is finite).

2. To do this, we will construct a deterministic machine, D, that will
enumerate all possible configurations that would appear in the compu-
tation tree of the nondeterministic machine N in breadth first order.
Eventually, our deterministic machine’s tape will be filled with a long
sequence of configurations. Configurations corresponding to nodes at
the top of the computation tree will appear at the beginning of the
tape. As the machine is allowed to compute longer and longer, config-
urations corresponding to deeper and deeper levels in the tree will be
written on the end of the tape.

The algorithm to follow is simple to express if we assume D has two
tapes:

• Convert input w into an initial configuration for N , (q0, ε, w).
This will all happen on tape 1. Tape 2 will still be empty.

• Repeat (until you see an accept or reject configuration or there
are no unexpanded configurations on tape 1):

– Copy first unexpanded configuration from tape 1 to tape 2
(overwrite any previous configuration on tape 2).

5

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d6337a76-73e2-466f-bedd-ab9c013ffaf5

– Expand the configuration on tape 2 by writing all configura-
tions derivable from this configuration at the end of tape 1.
This will require building knowledge of N ’s transition func-
tion into the transition function for D.

3. The tape alphabet Γ′ that we use for D will have to contain all the
symbols in Γ together with:

• Some delimiter to serve in the role of the commas that separate
the components of a configuration.

• Symbols that can be used to encode all the states of N .

• Two delimiters we can use to separate configurations from one
another on our tape. One will be used in the section of tape
containing configurations that have been expanded ($), the other
will be used between configurations that still need to be expanded
(#)..

4. The machine D, will clearly recognize the same language as N since
it will find an accepting configuration if and only if one occurs in the
computation tree.

5. If the computation tree is finite, D will eventually halt. Therefore, if
N decides a language, D will decide the same language.

6

