
CS 361 Meeting 2 — 2/10/20

Announcements
1. Homework 1 is available on the course web page. It is due in class on

Wednesday. Anonymous id numbers will be sent to you today.

2. You can use LaTeX on either the department’s Linux or MacOS ma-
chines.

3. Tom’s hours (this week only): Mon. 2:30-4:00, Tue. 2:00-4:00.

4. TA hours this week (this week only): Tue. 7-11 in Schow 030A.

5. Office hours schedules for the rest of the semester will be posted on
course web page.

Models of Computation

1. One of the major goals this semester will be to find an example of a
program we can prove it would be impossible to write.

2. To show that it is impossible to write some program, we need to pre-
cisely specify a mathematical model of what a computer is.

3. As a starting point, consider the following block diagram for a com-
puter (which I suspect you have seen before).

Control

Memory

Input Output

4. We will actually consider three major models in this course (finite
state automata, push-down automata, and Turing machines). The

Click here to view the slides for this class

big difference between the three is in how the memory behaves. In
particular, the form of the input and output will be the same in all
three.

Strings as Input

1. Diagrams similar to that for our computer model are often used to
describe mathematical functions. In that case, the input and output
is often a single value from some infinite set.

2. In any real computer, the input (and output) is some sequence of sym-
bols:

• This might (appear to) be:

– A sequence of characters entered on a keyboard

– A sequence of mouse coordinates and button actions

– A sequence of MIDI codes

– A sequence of values produced by an accelerometer or GPS
unit.

• Ultimately, keyboards, mice, USB microphones, all convert what
the user perceives as the “input” into a sequence of 0s and 1s.

3. If we modeled all input as sequences of binary digits, we would spend
a lot of time figuring out how to encode things in binary. It gets messy
very quickly.

4. To avoid this, we will model the input to our machines using sequences
of symbols from any finite alphabet. We call such sequences strings.

5. With this in mind, we can define a few terms that will be important
throughout the semester:

alphabet An alphabet is a finite set. We typically use the symbol Σ to
name our alphabet. (Occasionally, in moments of wild abandon,
we might use Γ instead!) Examples include

• Σ = {a, b, . . . , y, z} = the English alphabet with which we are
all familiar.

• Σ = {0, 1} or {T, F} = the binary alphabet.

1

http://www.cs.williams.edu/~tom/courses/361/notes/Lect2slides.pdf

• Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} = the decimal digits.

string A string is a finite (possibly empty) sequence of symbols from
an alphabet. Examples include:

• hello world (if Σ = {a, b, . . . , y, z, }).

• 10001 (if Σ = {0, 1}).

• 01267 (if Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}).

length The length of a string is just the number of symbols it contains.

ε The string of length 0 is called the empty string and is usually written
as ε (rather than "").

concatenation Given two strings v and w, we write vw to denote
the concatenation of these two strings which is just the sequence
formed by placing all of the symbols in w after the symbols in v.

substring Given a string w, we say that v is a substring of w if for
some strings x and y, w = xvy.

prefix and suffix Given a string w, if w = xy we say that x is a
prefix of w and y is a suffix of w.

lexicographic order is alphabetical order (or perhaps numerical or-
der).

I am the Decider — Modeling Output

1. If we use strings to model our machine’s input, it might seem to make
sense to use them for output as well. If there were to be a difference
between our input and output model, one might expect it to be that we
would also allow infinite outputs (to account for things like a program
that keeps printing digits of π forever.

2. In fact, our output model will actually be much more restrictive than
our input model!

• Our programs will all be Deciders! (Just like George Bush II.)

• When THE DECIDER decides, the decision is not “maybe”! It
is “Yes” or “No”.

• Similarly, the machines we will study will produce as a result a
single “Yes” or “No” (or true or false (or 1 or 0)).

3. To understand why such a limited output model makes sense:

(a) Remember that we want our ultimate model (the Turing Machine)
to be as simple as possible as long as the simplifications themselves
do not limit the things we can compute, and

(b) Think a bit about the program to print an approximation to π
that we talked about last time.

• The version of the program we described took an input value
n and printed out the first n digits of π.

• Suppose instead we implemented a program that took an in-
put value n and printed out just the nth digit of π.

• Clearly, we could implement the second program iff we could
implement the first.

– Given the first program we could modify its output state-
ments to suppress all but the last digit of output.

– Given the second program, we could wrap a loop around
its code and fool it into being run over again under the
impression that its input values ranged from 1 to n.

• Now, if when I described the second program you were think-
ing about decimal digits, readjust your thinking and imagine
that it is a program that prints the nth bit of the binary
representation of π. It is now a program that fits into our ap-
parently very limited model, yet is arguably no less powerful
or difficult to implement than a program that printed many
digits of π.

• In general, given any program that takes some input and
produces arbitrary strings, we can imagine a way to repre-
sent those strings in binary and then imagine a program that
takes the input to the original program and a digit position
as input and tells us whether that digit of the output of the
original program was 1 or 0. The new program fits our re-
stricted model, but in some sense still provides the means to
determine the complete output of the original program.

4. A program that output a boolean result can be interpreted as a pro-
gram that identifies a subset of its input domain.

2

• If we take our binary π program and change it to output yes or
no, we can interpret its behavior in an interesting way. It takes
an integer as input and tells us whether that integer belongs to
the set

{ n | the nth digit of the binary representation of π is 1 }

That is, it “decides” whether a number is a member of a set.

• A method that describes a subset in this way is known as an
indicator (or characteristic) function.

Based on these ideas, we will view all of the machines we describe as
devices that describe sets of strings. We will say that a machine either
accepts or rejects each string over its input alphabet. The set of strings
accepted by a machine is called its language.

Languages

1. As a result, we can view the programs that can be written using our
machine models as programs that describe sets of strings over an al-
phabet. This leads to another important definition:

Language A language over a given alphabet is any subset of the set
of all strings over that alphabet.

2. This allows us to say that a program that takes a binary encoding of a
number n and says “Yes” if the n digit of π in binary is 1 and “No” if
it is 0 decides the language of binary encodings of the digit positions
in the binary representation of π that are ones.

3. Since languages are sets, we can certainly use standard operations and
notations for talking about languages:

membership A string is a member or element of a language if it
occurs in the set which is the language.

∅ The empty set is a language.

union The union of two languages is just the language containing all
strings that appear in either language.

intersection The intersection of two languages is just the language
containing all strings that are members of both languages.

complement The set of all strings that are not members of a given
language. (Here, the universe is implicitly the set of all strings
over the alphabet of the language.)

power set The set of all subsets of the members of a language.

4. There are also some operations on languages that only make sense
because they are sets of strings:

Products If X and Y are languages over some alphabet, then their
product, XY, is defined to be:

{xy | x ∈ X and y ∈ Y }

• Note that this definition is similar to but different from the
standard cross product operation. If we applied the cross
product to two sets of strings we would get back a set of
pairs each composed of two strings rather than a new set of
strings.

Powers If X is a language over Σ we define Xn to be the language
containing only the empty string if n = 0 and XXn−1 otherwise.

Closures If X is a language over Σ we define X+, the positive closure
of X, to be the union of the sets X1, X2, X3, . . . and X∗, the
closure of X, to be the union of X0 and X+.

Finite State Machines

1. Let us look at a simple, but slightly practical example of a language
that can be described by the kind of “decider” machine we have sug-
gested using as our model of computation.

• Abstractly, consider the subset of the set of strings over the al-
phabet Σ = {0, 1} that contain an even number of 1s.

• This abstract language has a very concrete interpretation in many
computer systems.

3

– To detect certain hardware errors that lead to the misinter-
pretation of the the binary digits in a unit of data, machines
often add an extra digit whose value is chosen so that the
total number of 1s is even. This is called a parity bit.

– After the data (including the parity bit) has been stored or
transmitted, the integrity of the data can be checked by en-
suring that the total number of 1s is still even.

• Consider how you could handle the task of checking the parity
in a large data unit as the bits arrived. Note that we could also
view this as the task of deciding if a message had valid parity or
recognizing the language of binary strings with valid parity.

– You could keep a total count of the number of ones seen and
at the end divide by 2.

– It is a lot easier, however, to just remember whether the num-
ber of ones you have seen is even or odd because you would
then just switch back and forth every time you saw a 1.

– We can encode this “algorithm” with the “state transition
diagram”:

1
odd

00

even

1

– In this diagram:

∗ Circles are states; One state represents the fact that we
have seen an even number of 1s so far. The other corre-
sponds to situations where we have seen an odd number
of 1s.

∗ The arrows indicate when and how our state should
change. Each arrow is labeled with one (or more) sym-
bol from the input alphabet. We process the symbols in
the input string in sequence. For each symbol, we start

in some state and follow the edge from that state that is
labeled with the current input symbol to the next state.
This is the state in which we will begin as we process the
next input symbol.

∗ The circle with an arrow pointing to it is the start state.
We position ourselves in this state as we begin processing
input characters. There is only one start state.

∗ Double circles are accept states; The computation says
“Yes” (accepts the input) if we end up in one of these
states at the end of the input string. There may be 0 or
more accept states.

∗ If we end up in one of the states that is not final, we say
the computation rejects the input string.

• Diagrams that describe computations in this way are called deter-
ministic finite automata (or deterministic finite state machines).

– We will give a more formal definition of DFA shortly, but just
thinking of DFAs as diagrams with states and transitions will
suffice to get some intuition about how such machines work.

Regular Languages

1. A language is said to be regular if and only if it is the language of some
DFA.

2. From the machine shown above, we know that the set of strings of
binary digits exhibiting even parity form a regular language.

3. Consider the machine below:

o

10 e

0

1

4

The language of this machine is:

(a) The set of strings of 0s and 1s, that end with a 0.

(b) The set of strings of 0s and 1s, that represent an even number in
binary place notation.

(c) {w|w ∈ {0, 1}∗ & w represents an even number in binary }

4. Just to prove that we have not restricted ourself to the binary alphabet,
consider this machine:

o
{ 1, 3, 5, 7, 9 }

{ 0, 2, 4, 6, 8 } e

{ 0, 2, 4, 6, 8 }

{ 1, 3, 5, 7, 9 }

• Its alphabet is the 10 decimal digits.

• Take a minute to consider what language this machine recognizes.

• Like our previous example, it recognizes even numbers. This time,
however, the input is in decimal rather than binary.

Practice, Practice, Practice

1. To make sure you are all comfortable with the fundamentals of finite
state machines before we work on making them all formal and mathe-
matical, in our next class I will ask you all to help me construct working
machines for a few languages.

2. Most FSM construction problems are totally artificial (just look at the
exercises at the end of the first chapter). I have tried to think of a few
examples with a bit of a practical flavor.

• As a first exercise consider how to sketch out the state diagram for
a DFA that recognizes binary sequences that represent multiples
of 3.

As a hint, the machine will be a generalization of the machine
we just looked at for separating odd numbers from even ones.
It should have three states representing the conditions a) “The
digits scanned so far form a number that is divisible by 3”, b)
“The digits scanned so far form a number that is one greater
than a multiple of 3”, and c) “The digits scanned so far form a
number that is two greater than some multiple of 3”.

• The second example involve validity of binary strings relative to
a simple scheme known as binary coded decimal (BCD for short).

In many business applications, decimal numbers are processed,
but so little arithmetic is done with them that the cost of con-
verting to binary and then back to decimal is bigger than the
processing that is actually done on the encoded numbers. In such
situations, an alternative to using binary place notation is to en-
code each digit of a decimal number using 4 binary digits (which
is enough since 24 > 10) and then just string these groups of 4
together.

For example, 361 would be represented as 001101100001 since
0011 is 3 in binary, 0110 is 6 and 0001 is 1. On the other hand
00111100001 would be invalid as a BCD encoding for two reasons:
a) it breaks up as 0011 1100 001 where the last group is shorter
than 4 because the total length of the sequence is not a multiple
of 4 and b) the second subsequence, 1100 is 12 in binary which is
bigger than any decimal digit.

Your exercise is to build a FSM that accepts binary strings that
are valid when interpreted as BCD encoded decimal numbers.

5

