
CS 361 Meeting 18 — 4/10/20

Announcements
1. Nothing today.

Building a PDA for a CFG
(Click for video)

1. The set of languages that can be described by a push down automaton
is exactly the same as those that can be described using a context-free
grammar. That is, both notations provide exactly the same expressive
power.

2. To establish this fact, one has to show both that the language of any
context-free grammar can be described by a push down automaton
and that any language described by a push down automaton can be
described by a context-free grammar.

3. Sipser’s text provides the details of proofs for both these claims. Rather
than reproducing these proofs, my goal will be to work examples that
illustrate the intuition behind the constructions used to complete the
proofs.

4. Oddly, in presenting these examples, I won’t strictly follow the trans-
formation algorithms included in Sipser’s proofs. Algorithms can’t use
intuition. They have to follow simple rules for converting an input
to an output. I believe it will be more useful for our understanding
of the algorithms to perform the transformations using the intuitions
underlying the algorithms but taking advantage of insights that will
allow us to take shortcuts that will simplify the overall process enough
to make understanding the resulting machines/grammars possible.

5. First, let’t think about how one can design a PDA to accept the same
language as some given context-free grammar, G.

• To make things concrete, suppose we attempt to do this for the
glob-blob grammar:

Click here to view the slides for this class

B → x G B y
B → z
G → a G
G → ε

• Consider a simple derivation relative to this grammar:

B=⇒xGBy=⇒xaGBy=⇒xaBy=⇒xaxGByy=⇒xaxByy=⇒xaxzyy

• Now, let’s look at the same derivation from a different an-
gle/perspective.

x
a
x

x x z
x x a a y

x a a x x y
B =⇒ G =⇒ G =⇒ B =⇒ G =⇒ B =⇒

B B y B y
y y y y

y

• This is the same derivation, but each sentential form is:

– written with its symbols running vertically rather than hori-
zontally, and

– aligned so that the first (i.e. left-most) variable found in
each sentential form is on the same line as the derivation
symbol (=⇒), or (more precisely) aligned so that all terminal
symbols preceding the first variable are above the line holding
the derivation symbols.

• This presentation of the derivation is intended to suggest a pro-
cess one might follow when looking for a derivation for a given
string/input that can be emulated by a PDA.

– Start with a sentential form consisting of just the start sym-
bol.

– Repeatedly:

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=549883a7-5e7c-445b-b4cf-ab8f015afdcc
http://www.cs.williams.edu/~tom/courses/361/notes/Lect18slides.pdf


∗ Make sure that the prefix of the current sentential form
preceding the first variable matches the equal length pre-
fix of the input string.

∗ Based on the next few symbols of the string to be derived,
choose a production to apply to the leftmost/topmost
non-terminal in the current sentential form.

∗ Apply the production to get the next sentential form

– Stop when the sentential form is a sentence that matches the
target string.

• To build a PDA that implements this approach, we will keep the
suffix of the current sentential form starting at the leftmost non-
terminal on the PDA’s stack.

• We must provide transitions to let the PDA replace a non-terminal
at the top of the stack with the symbols on the right hand side of
some rule for the symbol on top of the stack.

• We need to also provide transitions to let the PDA “cross off” any
terminals in the prefix of the current sentential form that match
the next symbols in the input as it reads those symbols.

• We begin with states and transitions to push the initial sentential
form (the start symbol) and an end of stack marker onto the stack:

Parse

start
final

ε, ε / $

ε, $ / ε

S'

ε, ε / B

• Next, for all terminal symbols, we add transitions to allow the
machine to match symbols in the input to symbols preceding the
first variable in the current sentential form:

Parse

start
final

ε, ε / $

ε, $ / ε

S'

ε, ε / B
x, x / ε

y, y / ε

z, z / ε

a, a / ε

• Next, for each rule in the grammar, we add sequences of tran-
sitions through additional states (as necessary) that enable the
machine to replace any variable on the top of the stack with the
symbols found on the right side of one of that variable’s produc-
tions.

The diagram below shows the components added just to handle
the production B → xGBy:

Parse

start
final

ε, ε / $

ε, $ / ε

S'

ε, ε / B
x, x / ε

y, y / ε

z, z / ε

ε, B / y

ε, ε / B

ε, ε / x

a, a / ε

ε, ε / G

• Doing the same for the other three productions in G gives us a
complete PDA for the language:

2



Parse

start
final

ε, ε / $

ε, $ / ε

S'

ε, ε / B
x, x / ε

y, y / ε

z, z / ε

ε, B / y

ε, ε / B

ε, ε / x

ε, G / G
ε, ε / aε, B / z

a, a / ε

ε, ε / G

ε, G / ε

• The text provides a detailed proof, but I hope it is clear that the
same procedure can be used to produce a PDA for the language
of any context-free grammar. Thus the languages accepted by
PDAs includes all context-tree languages.

Building a CFG for a PDA
(Click for video)

1. To complete the proof that PDAs and CFGs describe the same set of
languages, we need to show that it is possible to construct a grammar
that describes the same language as any, given PDA.

• The proof given in Sipser and the approach we will illustrate here
depends on assuming that the PDA we start with has three special
properties:

– The machine has a single accept state.

– The machine always empties its stack before entering the ac-
cept state.

– Every transition either pushes or pops a stack symbol (but
not both).

• It is easy to convert a given PDA to have all three of these prop-
erties. All of the machines we have considered have already had
the first two!

• As an example, we will use a machine for the language used as an
example earlier:

Ladd = {1i + 1j = 1i+j | i, j ≥ 1}

• The machine we discussed for this language earlier does not have
the third required property:

1, ε / 1 

pre+

+, ε / ε

post =

ε, $ / ε

1, 1 / ε 

start
final

ε, ε / $

1, ε / 1 

pre =

=, ε / ε

• We can revise the machine to satisfy the third property by adding
a few extra states turning single steps in which no symbol was
pushed or popped in two steps that lead to the same destination,
but push then pop some symbol:

1, ε / 1 

A

+, ε / +

E

ε, $ / ε

1, 1 / ε 

S
F

ε, ε / $

1, ε / 1 

C

=, ε / =

B D

ε, + / ε ε, = / ε

• Given such a machine, Sipser’s strategy for constructing a gram-
mar for the machine’s language is to define a grammar with a set
of non-terminals {Apq | p, q ∈ Q} and productions chosen so that
L(Apq) = exactly the strings that take the PDA from state p with
an empty stack to state q with an empty stack.

– This has some of the flavor of the construction used to show
that given a DFA, we could construct a regular expression for
the machine’s language.

3

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0e47116f-aa66-4fc4-bc0f-ab90013266e6


– Here, things are a bit trickier because we have to account for
the stack.

• To accomplish this, Sipser’s proof include three types of rules in
the grammar. The first collection of rules is probably the most
important, but the description of the rules is a bit scary:

For each p, q, r, s ∈ Q, t ∈ Γ, and a, b ∈ Σε, if (r, t) ∈
δ(p, a, ε) and (q, ε) ∈ δ(s, b, t), include the rule Apq →
aArsb in the set R for G.

• A more intuitive way to state this description is:

If state p pushes t and goes to r on input x and s pops t
and goes to q on input y include Apq → xArsy in the set
R for G.

• Given the machine we are working with, the description requires
that we include the following rules in our grammar:

– ASF → εAAEε

– AAE → 1AAE1

– ACE →= ADDε

– ACE → 1ACE1

– AAC → +ABBε

(Normally, the ε’s include in these rules would be omitted, but we
have included them to make it clear how each rule results from
the process described for determining the rules to include.)

• It should already be clear that these rules might be useful pieces
toward forming a complete grammar for Ladd.

• The next requirement is to add ε-productions for the variables App
for every state p in the PDA. Clearly, on ε any PDA can “move”
from any of its states back to that state without changing its
stack.

• This rule leads us to add the productions:

– ASS → ε

– AAA → ε

– ABB → ε

– ACC → ε

– ADD → ε

– AEE → ε

– AFF → ε

• The main impact adding these rules has in this example, is that
we can expand the epsilon productions “inline” to simplify the
productions we derived from the first rule to obtain a version
without any explicit or implicit ε’s:

– ASF → AAE
– AAE → 1AAE1

– ACE →=

– ACE → 1ACE1

– AAC → +

• Finally, for any three states, p, q and r, it may be possible to
get from p to q starting and ending with an empty stack by first
going from p to r starting and ending with an empty stack and
then going from r to q with an empty stack. To capture this,
Sipser tells us to add rules of the form Apq → AprArq for every
such triple.

• Even for our simple machine with 7 states there would be 73 = 343
such rules.

• For a construction algorithm in a proof, adding 343 (or 10 million)
rules is no problem. Unfortunately, writing out all these rules
tends to prevent mere mortals from getting any intuition about
how the construction really works.

• Fortunately, there are some obvious situations in which rules of
the form Apq → AprArq that are certain to be useless1 components
of our grammar can be identified.

– In our machine, all transitions are from left to right, so non-
terminals of the form Apq where p appears to the right of q
in our state diagram are clearly useless.

1 Technically, a non-terminal in a grammar is considered useless if it is impossible
to derive any string of terminals from the non-terminal. Any rule in a grammar that
contains a useless non-terminal on its right hand side must be useless in the sense that it
cannot appear in any derivation that produces a sentence of the language of the grammar.

4



– In any machine, if all transitions out of a given state im-
mediately pop a stack symbol, then there can be no inputs
sequences that would take the machine from that state start-
ing with an empty stack to any other state ending with an
empty stack. Therefore, if p is such a state, for all q the
non-terminals Apq must be useless.

– In any machine, if all transitions into a given state q push a
stack symbol, all variables of the form Apq must be useless.

• As a result, there is really only one production of interest added
to our grammar by this last rule

AAE → AACACE

• Putting this all together, eliminating the unnecessary start sym-
bol ASF by replacing it with AAE , and reordering our rules to
make things a bit clearer we get:

– AAE → 1AAE1

– AAE → +ACE

– ACE → 1ACE1

– ACE →=

It should be clear that this is indeed a grammar for the language
accepted by our PDA!

2. Again, what we have done is intended to give you an intuitive appreci-
ation of the constructions presented in Sipser. You should reread the
details in Sipser carefully with the hope that this intuition will make
the argument clearer.

5


