
CS 361 Meeting 15 — 03/13/20

Announcements
1. Our midterm will be a 24-hour take-home open-book/notes. It will

occur when we start our on-line meetings in April.

2. Homework assignment 5 is due today, but you can take a 1 week ex-
tension with no penalty.

Pushdown Automata

1. Last time, I introduced a new model of computation called the push-
down automaton. It processes inputs sequentially while making state
transitions, but it can store data in a stack as it reads the input and
its transitions can depend on the symbol on top of the stack.

2. At the end of class we were exploring a simple example of a PDA that
recognized the language {1n = 1n|n ≥ 0}.

• The diagram below provides an informal description of a push-
down automaton that recognizes this language.

1, ε / 1

pre =

=, ε / ε

post =

ε, $ / ε

1, 1 / ε

start final

ε, ε / $

• This machine has one feature that is somewhat an artifact of the
way Sipser chooses to describe PDAs — namely, his formalism
provides no way for the machine to sense if its stack is empty.
This will lead most of our machines to include a start state with
just one transition that puts a recognizable symbol at the bottom
of the stack before processing any input.

Click here to view the slides for this class

• Also note that this trick depends on epsilon-transitions. In par-
ticular, for now, all PDAs are non-deterministic.

• Let’s trace through the steps this machine takes processing the
input 11=11.

3. To help solidify your understanding of this informal introduction to
pushdown automata, I would like you to design a machine (or at least
a modification of another machine) working with a fellow student, so...

• Think about how to construct a PDA that recognizes

Ladd = {1i + 1j = 1i+j | i, j ≥ 0}

The answer to this question should look something like:

1, ε / 1

pre+

+, ε / ε

post =

ε, $ / ε

1, 1 / ε

start
final

ε, ε / $

1, ε / 1

pre =

=, ε / ε

The first two states to the right of the start state push
as many 1s on the stack as there are before the = sign
and make sure that there is exactly one + sign. The last
state makes sure that the number of 1s after the equal
sign matches those seen before.

PDAs Formally

1. A pushdown automaton is a 6-tuple (Q,Σ,Γ, δ, q0, F) where:

Q is a finite set of states,

Σ is a finite input alphabet,

Γ is a finite stack alphabet,

δ : Q× Σε × Γε → P(Q× Γε) is the transition function, and

F ⊂ Q is the set of final or accepting states.

1

http://www.cs.williams.edu/~tom/courses/361/notes/Lect15slides.pdf

2. We say that a PDA M = (Q,Σ,Γ, δ, q0, F) accepts a string w =
w1w1...wn, wi ∈ Σε if ∃q1, ...qn ∈ Q and s0, s1, ...sn ∈ Γ∗ such that:

• s0 = ε

• ∀i, 1 ≤ i ≤ n,∃hi, pi ∈ Γε and ti ∈ Γ∗ such that si−1 = hiti, si =
piti and (qi, pi) ∈ δ(qi−1, wi, hi)

• sn ∈ F

Thinking Nondeterministically

1. When we studied finite automata, we started with the deterministic
model and then moved on to consider nondeterminism later. With
pushdown automata, we have started right away using nondeterminism
(at least in the form of epsilon transitions).

2. To reinforce the power of nondeterminism in this model, I want to ex-
plore a few solutions to the problem of building a pushdown automaton
for the language

Leq occur = {w | w ∈ {a, b}∗ and w contains as many a’s as b’s}

3. First, it should be clear that this cannot be a regular language since if
we intersect Leq occurs with the language of the regular expression a∗b∗

we get {anbn | n ≥ 0} which is clearly not regular.

4. So, we should expect to have to use the stack in some way to keep
track of how many letters of each type we have seen. Any suggestions?

5. If you are stumped, consider this machine and see if you can explain
how it works intuitively:1

1The transitions between the two ≥ states in this version of the machine for Leq−occurs

violate Sipser’s formalism by pushing two symbols (a or b and $) at the same time. We
view these transitions as a shorthand for a series of transitions like those shown in the
version of the same machine shown below:

a, ε / a #As ≥
#Bs

b, $ / b$ final

ε, ε / $

b, ε / b
#Bs ≥
#As

a, $ / a$

b, a / ε

a, b / ε

ε, $ / ε

ε, $ / ε

1st letter

a, ε / a

b, ε / b

startstart

6. We cannot use one stack to simultaneously keep track of two separate
counters — one for a’s and one for b’s. What this machine does instead
is use the stack to keep track of how many more a’s than b’s have been
seen when more a’s have been seen. However, when more b’s than a’s
have been seen it instead uses the stack to keep track of how many
more b’s than a’s.

7. What I really want you to notice is the peculiar way this machine uses
nondeterminism.

• The only nondeterministic transitions in the machine are the ε
transitions leaving “start” and leading to “final”.

a, ε / a
#As ≥
#Bs

b, $ / $

final

ε, ε / $

b, ε / b
#Bs ≥
#As

a, $ / $

b, a / ε

a, b / ε

ε, $ / ε

ε, $ / ε

1st letter

a, ε / a

b, ε / b

silly
state

ε, ε / a

silly
state

ε, ε / b

startstart

2

• They both involve the peculiar fact that there is no explicit way
to test for empty stack or end of input in Sipser’s model of a
pushdown automaton.

• The first ε-transition puts a marker at the bottom of the stack so
that other states can tell when it is (near) empty.

• The transitions to “final” reflect the fact that there is no deter-
ministic way to make a transition only when the machine reaches
end of input.

• To accept an input, a PDA must reach a final state at a point
where all of the input has been consumed.

– Because of the way this machine uses the stack to balance the
number of as and bs, it will be in either the “#As ≥ #Bs”
state or the “#Bs ≥ #As” state when the input runs out.

– Neither of these states can be final because we should not
accept if any a’s or b’s are left in the stack.

– The ε transitions from the ≥ states to “final” let the machine
guess that it is at the end of the input whenever the stack
is emtpy. If it guesses correctly, it will be able to accept the
input. An incorrect guess will leave it in a final state with
no way to consume the remaining input so that branch of
nondeterminism will just expire.

8. Then, the cupcakes arrived!!!

3

