
CS 361 Meeting 13 — 3/9/20

Announcements
1. Homework 5 is online. Due Friday.

2. 3/16 will be midterm week.

Informal Formal Grammars

1. Basic introduction to context-free grammars.

• A grammar is a way of specifying a language using rules like the
following which (informally) says that anything composed of a
variable followed by an assignment operator and an expression is
a valid statement.

< stmt > → < var > = < expr >

In this particular notation for writing grammars (a variant of
BNF or Backus Normal Form (or Backus Naur Form), which was
originally used to describe the programming language Algol 58
back in 1958!), the symbols in angle brackets denote classes of
syntactic phrases and are called variables (or non-terminals).

The symbols not in angle brackets denote components of strings
in the language being described. They are called terminals.

The rules are sometimes called productions.

• The syntactic phrases in most interesting grammars are frequently
defined recursively (either directly or indirectly).

< stmt > → while (< expr >) < stmt >

• When used as a notation for specifying languages, various nota-
tional conveniences are employed (such as using a | to abbreviate
a set of rules that would have the same phrase type on the left
hand side).

< stmt > → < var > = < expr >
| while (< expr >) < stmt >

Click here to view the slides for this class

• Given this we can give a complete set of rules describing a simple
language capturing some of the syntax of common control struc-
tures and assignment statements:

< stmt > → < var > = < expr >
| if (<expr>) <stmt>
| if (<expr>) <stmt> else <stmt>
| while (<expr>) <stmt>

<expr> → <var>
<var> → x | y | z

• We can view the rules of a grammar as specifications of relation-
ships between sets. For example,

< stmt > → < var > = < expr >

implies

< stmt > ⊂ < var > = < expr >

• It is more common to view the rules of a grammar as replacement
rules. That is, given a string containing terminals and variables,
we can replace any of the variables with the right hand side of
any rule with the variable’s name on the left.

• For example, the grammar above lets us write:

< stmt > =⇒ if (<expr>) <stmt>
=⇒ if (<var>) <stmt>
=⇒ if (x) <stmt>
=⇒ if (x) < var > = < expr >
=⇒ if (x) y = < expr >
=⇒ if (x) y = < var >
=⇒ if (x) y = z

2. Grammars of this sort are called context-free grammars.

Slightly More Formal Grammars

1. The notation shown above is typical when context-free grammars are
actually used to describe programming languages.

1

http://www.cs.williams.edu/~tom/courses/361/notes/Lect13slides.pdf

2. When studied as an example of a notation for describing languages
from a theoretical standpoint, a slightly different notation is typically
used.

• Instead of words in angle brackets, variables are typically denoted
using capital letters.

• Lower case letters and digits are used for elements of the alphabet
of the language being defined.

3. In addition, theoretical studies typically focus on sillier languages. For
example, consider the following grammar:

E →
E → 0E
E → 1D
D → 1E
D → 0D

• Can you tell what language this grammar describes?

• It might help to consider a derivation like:

E=⇒0E=⇒00E=⇒001D=⇒0010D=⇒00101E=⇒00101

• In general, the grammar describes

LParity = {w ∈ {0, 1}∗ | the number of 1s in w is even }

• We encountered this language weeks ago as an early example of
a regular language. Hence, we now know that context-free gram-
mars can describe at least some regular languages.

4. Recall the language LEQ = {1n = 1n | n ≥ 0}. This was probably the
simplest example of a language that is not regular that we discussed.
Think about how one could describe this language with a context-free
grammar.

• The string “=” is in the language, so we would include the pro-
duction E →=.

• If we have a string in the language, we can form another string
that belongs in the language by adding a one to the front and
another 1 to the end. The production E → 1E1 captures this.

• Together, these two productions describe all the strings in the
language!

• We can see, therefore that at least in some cases, context-free
grammars are more expressive than DFAs or regular expressions.

5. Let’s try a few more examples for practice so that you get a good sense
how context-free grammars can be used to describe languages. I would
like you to work in pairs on grammars for the following three languages
and then I will ask for volunteers to present a grammar for each one.

• The first example is one of my favorites. Binary strings that
represent values that are multiples of 3. You may recall that the
following FSA recognized this language:

0

3n + 2

1

0

3n

3n + 1

1

1

0
1

!
0

• The second is possibly the simplest of the three languages since it
is quite a bit like the language we just did (i.e., it may seem like
the one to go for if you are aiming to be an underachiever):

LUnaryAddition = {1a + 1b = 1a+b | a, b ≥ 0}

• The third is a good “real” example of the use of context-free
grammars to formalize the recursive description of a language.

LRE = {e | e is a valid regular expression over {0, 1}}

2

It may help to recall that:

Definition: Given some finite alphabet Σ, we define e
to be a regular expression if e is

– a for some a ∈ Σ

– ∅
– ε

– e0 ∪ e1, where e0 and e1 are regular expressions

– e0e1 where e0 and e1 are regular expressions

– e∗0 where e0 is a regular expression.

– (e0) where e0 is a regular expression.

6. The key to the second example is to recognize that any string of the
form 1n + w1n where w ∈ LEQ belongs in LUnaryAddition.

Therefore, the grammar:

A → 1 A 1
A → + E
E → 1 E 1
E → =

describes LUnaryAddition.

7. The grammar for LRE must include rules for the base cases of the
definition of regular expressions:

R → 0
R → 1
R → ∅
R → ε

together with rules for the recursive steps:

R→ (R)
R→ RR
R→ R ∪R
R→ R∗

8. Any language that can be described by a context-free grammar is called
a context-free language.

9. The examples we have considered raise an interesting question. We
know that there are non-regular languages that are context-free lan-
guages. We also know that there are regular languages that are
context-free. What we don’t know is whether there are regular lan-
guages that are not context-free.

10. The big question is whether the set of regular languages is a subset of
the set of context-free languages.

11. In fact, all regular languages can be described by context-free gram-
mars. The divisible by three example suggests two ways we might go
about proving this using the approach outlined below:

• Proof: Given a regular langauge L, we know that there is some
DFA D such that L = L(D). Given D, we can construct a grammar
G with...

. . .

and clearly the grammar G describes the language L.

• Proof: Given a regular langauge L, we know that there is some
regular expression e such that L = L(e). Given e, we can construct
a grammar G with ...

. . .

and clearly the grammar G describes the language L.

12. To do this correctly, however, we need more precise definitions of what
a grammar is and what language it describes.

3

