
CS 336 Fall 2015

Assignment 8: The Data Link Layer
Due the week of November 12/13, 2015

In the OSI reference model, the layers below the network layer are the data link layer and the physical
layer. The physical layer focuses on how bits are encoded as electrical signals or light waves and travel
through cables, optical fiber or as radio transmissions. The task of the data link layer is to provide a
reliable means of communication between two hosts directly connected by a channel capable of delivering
bits.

We have already discussed one standard topic associated with the data link layer, ARQ protocols
based on acknowledgements and retransmissions. This week, in a slight change from our original plan,
we will focus on other issues associated with the data link layer.

Reading §2.3 through 2.4 of Peterson and Davie will provide an overview of the material for the
week. Additional readings (described below) will be made available online.

A first step toward detecting and correcting errors is to delineate the stream of data flowing between
two machines into distinct units. This task is called framing. Framing provides basic units to which
error detecting codes can be applied. The first reading I would like you to do beyond the text this week
delves more deeply into one framing technique, byte stuffing. The paper is “Consistent Overhead Byte
Stuffing,” by Cheshire and Baker. It both presents an alternative to the more traditional schemes for
byte stuffing and bit stuffing discussed in the text and does a very nice job describing the traditional
schemes. To save a little time, you can skip or just skim much of the “Theoretical Analysis” section of
the paper.

Peterson and Davie include a discussion of an error detection scheme known as the cyclic redundancy
check or CRC. The cyclic redundancy check is employed by some of the most widely used network
protocols (Ethernet and WiFi). To gain some additional background on this scheme I ask you to read a
“classic” paper by (a different) Peterson and Brown entitled “Cyclic Codes for Error Detection”.1 One
of this week’s problems is designed to make you recognize that despite all the polynomials, CRC codes
are in some sense just parity bit codes. This reading is intended to counter that by giving you some
sense of what the polynomials are good for.

Exercises

1. Below you will find the contents of an actual Internet data packet I captured on my home network.
It is displayed in hexadecimal notation. The packet was 52 bytes long.

4500 0034 257e 4000 4006 88c7 0a00 0105

3f6f 420b f9f7 0050 66c2 5add 422b bdf1

8010 7ef6 c3f5 0000 0101 080a a6e5 6326

2094 c0ad

1I would guess that the Peterson who authored of our textbook was about 4 years old when this paper about the CRC
was published. As far as I know, these two Petersons are not related.

Another historical note of some (?) interest is that the CRC paper appeared in a publication entitled Proceedings of the
IRE. The abbreviation IRE is short for ”Institute of Radio Engineers”. A few years after the paper was published, the
IRE merged with another professional organization for engineers and became the Institute for Electrical and Electronics
Engineers or IEEE. If you don’t recognized the initials IEEE by now, you should. Many current networking standards are
set by the IEEE. For example, the wireless networks we use are known as IEEE 802.11 networks and Ethernet is IEEE
802.3.

1

CS 336 Fall 2015

(a) How long would the packet become if framed using the standard byte stuffing technique used
in PPP?

(b) How long would the packet become if framed using consistent overhead byte stuffing without
zero pair elimination? with zero pair elimination?

2. The Chesire and Baker paper seems to provide a significant improvement over standard byte
stuffing. If you think about the techniques used however, they should remind you of another
framing technique discussed in Peterson and Davie, the “Byte-Counting Approach”. As Peterson
and Davie observe, this is a technique that “every Computer Science 101 student knows”. Did
Chesire and Baker just reinvent the wheel? Obviously, their proposal differs from the byte counting
scheme described in Peterson and Davie. Rather than putting one byte count at the beginning
of a frame, they spread counts throughout the frame in such a way that they never increase the
size of the frame by more than one byte per “chunk”. However, most practical networks limit
packet size to less than 216 bytes. The limit on the radio network with which they are concerned
is even stricter. This means that if a single byte count was placed at the beginning of the packet,
two bytes would be sufficient to hold it. This amount of overhead is both highly consistent and
relatively modest. In their own discussion of fragmentation, Cheshire and Baker emphasize that it
is undesirable to include features that add complexity to the implementation of network protocols.
Is the added complexity of the Cheshire and Baker scheme justified if all it does is save a byte or
two for small packets? Defend your position.

3. Do problem 2.18 from Peterson and Davie.

4. It strikes me as interesting that the material on error detecting codes provided by most texts
jumps from the trivial (parity bits) to the mysterious (cyclic redundancy checks) or beyond. This
problem attempts to show that this jump isn’t as large as it may appear. In particular, the
conclusion of your work on this problem should show you that the CRC is nothing but a fancy
way of associating parity bits with sub-parts of a message.

(a) Compute CRC’s for each of the 4 bit messages 0001, 0010, 0100, and 1000 using the generator
polynomial: G(x) = x3 + x + 1.

(b) For a given generator polynomial G(x) of degree r and a given data length m, let

C(i)(x) =

r−1∑
j=0

c
(i)
j xj

be the remainder obtained by dividing G(x) into xi+r (0 <= i < m). For an arbitrary data
polynomial

M(x) =

m−1∑
i=0

mix
i

show that the remainder polynomial obtained by dividing xrM(x) by G(x) is

C(x) =

m−1∑
i=0

miC
(i)(x)

(using modulo 2 arithmetic).

Be careful. It is easy to have the right intuition for this problem but to get the details of the
math wrong. Make sure that you are not making unjustified assumptions about the operation

2

CS 336 Fall 2015

of determining the remainder of a polynomial division. In particular, it is important to realize
that the term “remainder” has a precise definition. In general, we say that q is the quotient
and r is the remainder of dividing p by d if

• p = qd + r, and

• 0 ≤ r < d.

In the case of division involving polynomials, the “<” relationship in the second condition is
interpreted as meaning of smaller degree.

(c) In completing the previous step, you have shown that the CRC is an example of a linear code.
That is, if you add together the check bits associated with two messages, A and B, then the
result will equal the check bits that should be associated with the message obtained by adding
together the contents of A and B (assuming in both cases ”add” means to add the binary
strings together bit-wise using modulo 2 arithmetic which is the same as exclusive-oring the
bit strings together).

Use this fact and the C(i)’s computed in part (a) to compute the CRC for the message
1001 using the generator G(x). Check your result by computing the CRC using the division
procedure presented by Peterson and Davie.

(d) Letting

C(x) =

r−1∑
j=0

cjx
j

show that

cj =

m−1∑
i=0

mic
(i)
j

for all j, 0 ≤ j < r.

This shows that each cj is really just a parity check on a subset of the message bits determined
by G and the length of the message.

(e) Determine which message bits are “checked” by each parity bit in the CRC using G(x) as
described above for messages of length 4.

5. Now that you know that the CRC is in some sense just fancy parity bits, it is worth asking
what all the polynomials are for. Suppose that you were given the task of choosing the generator
polynomial to use in a CRC-based error detection system. Assume that the plan was to add only
three bits to each message to detect errors. (No, this isn’t very realistic, but it will make this
problem easier by limiting your attention to at CRC polynomials that produce exactly 3 error
bits.)

How would you go about picking the ”right” polynomial to use? Are there any that can be
completely rejected? Why? How many are still left? What (if any) guidance can you gain by
applying Theorems 1 through 4 in the Peterson and Brown paper to the polynomials that you
can’t completely reject? Are the codes associated with any of the polynomials Hamming codes?
What is a Hamming code anyway?

In one sense, this question is fairly limited. Because all the coefficients are just 0s and 1s, there are
only 8 polynomials of degree 3 you need to consider. At the same time, this can be a dangerously
open ended problem. Don’t go overboard. I don’t expect any of you to positively identify the
”right” polynomial (I can’t). My main hope is that you will explore the implications of the
theorems in the paper enough to see how much (or little) guidance they really provide.

3

