CS 336 Fall 2015

Assignment 7: TCP and Congestion Control
Due the week of October 29/30, 2015

I’d like to complete our exploration of TCP by taking a close look at the topic of congestion control in
TCP. To prepare for this, you should read the discussion of congestion control presented in §6.1 - §6.4
or our text. There are several additional readings.

The early part of the readings from the text together with some of the material in §6.4.2 of the
text describe techniques that can be used in individual routers to address congestion issues. The RFC
“Recommendations on Queue Management and Congestion Avoidance in the Internet” discusses the
relationships between and significance of these techniques.

At the end of §6.4, Peterson and Davie discuss a proposed alternative to the standard TCP congestion
control mechanisms. This scheme, known as TCP Vegas, was actually first described in a paper authored
by Peterson and a student named Lawrence Brakmo. The paper, TCP Vegas: New Techniques for
Congestion Detection and Avoidance, will be one of our readings this week. The techniques the paper
describes are interesting in their own right. In addition, by providing a contrast to the techniques
employed by standard TCP implementations, learning about TCP Vegas will help us understand current
TCP congestion control mechanisms more fully.

Exercises

1. Complete problem 6.14 part (a) from the text. Stop when you get to wall clock time 10. For
each tick of the wall clock show the value of the virtual clock used to determine A;, which packets
arrive, the F; value assigned to each packet that arrived, the packet (if any) sent, and the packets
in the queue at each node. Identify packets by host/arrival time.

As you work this problem, think about what data structures would be used to implement the
process efficiently and come prepared to discuss such an implementation.

2. This is another question borrowed from the Cornell instructor who produced one of the traces we
looked at using Wireshark. The trace file mentioned can be found in “tom/shared/336/traces.

Load the trace file trace4.cap in Wireshark and answer the following questions. For this trace a
stream of TCP packets were sent from orkid to orchid for 1 second. The delay from orkid to orchid
was set to be 10 ms using NistNet. The complete Ethernet bandwidth of 10 Mbps was available
between the two nodes.

(a) Plot the time sequence graph and zoom in to the first 200ms of the trace. What do you see?
Give approximate sizes for the first 5 send windows and explain your observation briefly in
words.

(b) Plot the time sequence graph and look at the complete trace. The curve is not a straight line,
as you would have observed in other traces. Instead we have 4 similarly shaped segments in
the curve. What events do you believe caused each of these kinks in the curve? Does your
explanation precisely predict the number of packets sent in each burst? If not, identify the
anomalies you can’t quite explain.



CS 336 Fall 2015

(0.R)

- fair allocation

Flow 1°s
Transmission
Rate

oy

oy,

Y

Flow 2’s (R,0)
Transmission
Rate

Figure 1: Configurations of two sender feedback ssytem.

3. The text states that “It has been shown that additive increase/multiplicative decrease is a neces-
sary condition for a congestion-control mechanism to be stable.” For this question, I would like you
to investigate some alternatives to additive increase/multiplicative decrease to help understand
its advantages.

Additive increase and multiplicative decrease are two examples of linear window size update
mechanisms. In general, If W; is the congestion window size at time i, after the window size is
adjusted by a linear mechanism, we will have W;;; = AW, 4+ B for some constants A and B.
In the case of additive increase/multiplicative decrease, the adjustment made when congestion is
detected uses a value of A between 0 and 1 and sets B to zero. On the other hand, when a full
window’s worth of packets is acknowledged, the update formula uses 1 as the value of both A and
B.

To understand the behavior of such a scheme, consider the simple case where just two computers
using this approach are sharing a single bottleneck link. Assuming that the capacity of the
bottleneck link is R, the diagram shown in Figure 1 can be used to illustrate the way in which
the update process will adjust these two flows of packets.

In this figure, the point (x,y) is used to represent the state of the system when the flow from the
first computer has a window size that allows it to transmit at the rate y and the flow from the
second computer has a window size that allows it to transmit at rate x. The transmission rate
of a station using TCP congestion control will equal its window size divided by the round trip
time. Assuming the units used to measure time are such that RT'T = 1, it is fair to treat x and y
interchangeably as rates or window sizes. We will take this liberty in the following explanation.

The shaded triangle includes the points corresponding to all states for which the sum of the
packets transmitted by the two flows does not exceed R, the capacity of the bottleneck link. The
hypotenuse of this triagle corresponds to the set of states in which the link is maximally utilized



CS 336 Fall 2015

without exceeding its capacity. Different points on this line, however, represent different degrees
of fairness. At the point (0,R), the link is fully utilized, but only flow 1 is allowed to send packets.
Similarly, at point (R,0) only flow 2 can transmit. The midpoint of the hypotenuse, (R/2, R/2)
is therefore the optimal operating state for the system. At this point, the link would be fully
utilized and the allocation of bandwidth to the two senders would be fair.

A feedback mechanism like additive increase/multiplicative decrease aims to move the system
from one state to another with the goal of approaching this optimal state as closely and as quickly
as possible. For example, if the system began in the state corresponding to the point (o, yo)
shown in the figure, packets would eventually be lost (since the sum of the flows exceed the link
capacity). When the flows detected this loss, they would update their window sizes yielding new
window sizes x1 = Axg + B and y; = Ayg + B. This would correspond to the transition of the
system state from (xg,y0) to (21,y1) shown in Figure 1. The overall behavior of the systems
would be determined by the complete series of such transitions it performed.

(a) Onme possible alternative to additive increase/multiplicative increase would be additive in-

crease/ additive decrease. In this case, when a packet is lost, the window would be updated
using the formula W, 1, = W; — B;. When a full window of packets is sent without loss, the
update performed would be W;,1 = W; + B;. Typically, the constants would be selected so
that By > B;.
Assuming that the round-trip times for the two flows are the same and that when packets
are lost both flows suffer and detect loss, all the states (z;,y;) that can ever be reached from
some initial state (xo,yo) fall on a line that passes through (zg,y0). Find the slope and
y-intercept of this line.

(b) Another alternative scheme would be to use multiplicative increase and multiplicative de-
crease. In this case, when congestion is detected, the window size update would be computed
using W, 1 = AgW;, and after a full window of packets was delivered without loss, the update
would be Wi+1 =AW, with0< Ay <1< A; and A;Aq < 1.

Under the same assumptions about round-trip time and loss detection made in part (a),
show that all states (z;,y;) that can be reached from a given initial state (xo,yo) using this
scheme fall on a line that passes through (xg,y0). Find the slope and y-intercept of this line.

(c) Assuming a fixed round-trip time, the congestion window size used by a flow is proportional to
the rate at which it sends data and is therefore proportional to its throughput. In situations,
like those described in parts (a) and (b), where one flow’s window size is a simple function of
the other’s, it becomes possible to express the fairness of the state of the system as a function
of the window size of one flow. Please derive such a formula for fairness as a function of flow
2’s window size (i.e. fairness as a function of “x;”) for both:

e additive increase/additive decrease, and

e multiplicative increase/multiplicative decrease

using Jain’s fairness index as the measure of fairness.

Determine how each of these functions behaves as the window sizes change? That is, does
the fairness index increase, decrease or remain the same as the window sizes of the two flows
are increased?

(d) Given your observations concerning the behavior of the fairness index from part (c), explain
qualitatively how the fairness index will behave as a function of time when the additive
increase/ multiplicative decrease procedure actually incorporated in TCP is used to adjust
window sizes.



CS 336 Fall 2015

(e) For all of the subparts of this question, we have assumed that the round-trip times associated
with the two flows are equal. This is unrealistic for the Internet where connection lengths
may vary greatly. Suppose that flow 1’s connection’s round-trip time is three times as long as
flow 2’s. In this case, each time flow 1 succeeds in delivering one window’s worth of packets,
flow 2 will deliver three windows worth of packets. Therefore flow 2 will apply the “increase”
part of any window size adjustment algorithm three times as often as flow 1.

How would the results you obtained for the additive increase/additive decrease combination
in parts (a) and (c) change in this case? In your answer, assume that flow 2 applies both the
“increase” and “decrease” adjustments 3 times as often as flow 1. Would the set of states
the system could reach still be a line? If so, what would its slope be? What value will the
fairness index for the system approach as the window size grows?

What does this suggest about the fairness of additive increase/multiplicative decrease in
TCP when flows with different round-trip times interact?

(f) If you have been paying attention carefully all semester, you should realize that this is not
the first time we have encountered the use of additive-increase/multiplicative-decrease in a
feedback mechanism. What other protocol proposal that we have studied used this technique?
Is there a similar argument supporting the assumption that the use of AIMD in this other
context will provide convergence to fairness?

4. The diagram from our textbook shown below illustrates the adjustments made to the TCP conges-
tion window under the additive increase/multiplicative decrease strategy (AIMD). This diagram
is an idealized representation of actual TCP behavior. Among other things, it suggests that each
computer immediately resumes additive increase after applying multiplicative decrease due to a
packet loss. This approximates actual behavior when all loses are detected using duplicate ACKs,
but is far from accurate when timeouts occur. For this problem, however, I want you to assume
that it does accurately reflects the behavior of a single TCP connection.

T T T T T T T T T 1

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Time (seconds)

Figure 6.9 Typical TCP sawtooth pattern.

What I want you to explore in this question is what happens when we consider the traffic a
router actually processes as many flows independently follow this sawtooth pattern in response
to packets dropped by the router. In particular, suppose that the F' distinct flows are sending
packets through a single router.

We will assume that all of the flows send packets of the same size and that all flows have the same
round trip time, RTT. We will also assume that variations in the round trip time due to changes



CS 336 Fall 2015

in queuing delay are negligible so that RTT can be considered constant. Given this assumption,
we will measure all transmission rates in packets per RTT. This includes the individual flow rates,
R;, the combined transmission rate of all flows, R = Zf;l R;, and the router’s total capacity, C.
Measured in this way, a flow’s rate R; will be equal to its congestion window size measured in
packets. Therefore, assuming no packet loss, each R; will increase by 1 every RTT.

Earlier in this assignment, you showed that under the assumption of equal RTT, the AIMD process
is designed to adjust congestion windows in such a way that the system approaches fair allocation
and full utilization. That is, we would hope that under AIMD, the system described would tend
toward a point where R; = C/F for all i. This suggest that to make this interesting we should
assume C' >> F.

Important note:

The goal of this problem and all of the simplifying assumptions made in its statement
is to get a good approximate description of the idealized behavior of AIMD in certain
scenarios. This means you should take the word “approximately” seriously whenever it
appears.

(a) Suppose that at some time ¢y this system reaches the ideal point where R; = C'/F for all 4,
and none of the router’s buffers are occupied. No packets will need to be dropped, so over
the next RTT, all flows will increase their sending rate by 1. As a result, at time tqg + RT'T,
the combined rate R will equal C' + F', and F of router’s buffers will be full.

If the router has enough buffers to continue processing packets without any drops until time
to +2RTT, what will R be at this time and how many packets will be buffered.!

(b) Now, assume instead that the router actually has only F' packet buffers. As a result, im-
mediately after tg + RTT the router will begin dropping packets. Approximately how many
packets will have to be dropped before the application of multiplicative decrease sufficiently
reduces the combined flow rate so that the number of buffers required is < F. In your answer,
assume that the router is lucky (or clever) and drops packets from as many distinct flows as
possible (rather than dropping many packets from a few flows and none from others).

(¢) Under the assumptions stated in part (b), approximately what will be the combined flow
rate, R, at time tg + 2RTT.

(d) After the events described in part (b) and (c), the flows will resume AIMD and eventually
reach the state where the combined rates of all flows exceed C leading to another, similar
round of packet dropping. As long as all flows remain active, the system will repeat this
cycle indefinitely. How long will each cycle last (measured in RTT's) and what will be the
average number of packets dropped per RT'T averaged over many such cycles?

(e) Give a formula for the average efficiency of a router operating in this cycle. Your answer
should account for inefficiency due to both packet loss and periods where the combined rates
of all flows are less than the router’s capacity. Apply this formulas and your formula from
part (d) to the case where C' = 100 and F = 10.

(f) Recalling the advice in the introduction to this problem that you should take the word
approximately seriously, consider how the results would differ if the flows passing through
the router were all using TCP Vegas rather than TCP Reno.

IThe assumption that RTT is fixed might become questionable at this point with many packets buffered, but please
continue to make this assumption to keep things tractable.



CS 336

Fall 2015

Assume as we did in part (a) that the system magically arrives at a state where the flows are
fairly sharing the full capacity of the router at time ¢y. Also assume that all flows started
when all the routers on the paths used were idle and that there are enough buffers in the
router that no packets will have to be dropped. Finally, in the earlier parts of this problem,
we simplified things by assuming that the router was lucky enough to spread dropped packets
among the flows equally. With Vegas, you should instead assume that the router is lucky
enough to spread any queuing delays equally among the flows. That is, you should assume
that each flow will observe the same delivery rate.

Given these assumptions, what (if any) cycle would you expect the flow rates to follow in
the future.

Now, still assuming that we are using Vegas rather than Reno, suppose that at time to+RTT
another flow (flow F+1) begins to transmit packets. Assuming the Vegas mechanism designed
to end slow start before congestion begins moves flow F+1 into additive increase before its
rate exceeds its fair share, will the system eventually reach a state where all the flows divide
the capacity of the network fairly among the F+1 flows? If not, what will happen?



