
CS 336 Fall 2015

Exercise 11 —The Physical Layer
Due: December 3/4, 2015

The lowest level of the OSI model’s hierarchy is the physical layer which involves “transmitting raw
bits over a communication channel.” Our goal for this week will be to learn enough about the physical
layer to appreciate the ways in which the physics of the communication media used places constraints
on and provides opportunities for computer communication.

The readings for the week will come from our textbook (Peterson and Davie) and from texts by
Tanenbaum and Walrand. I will put copies of the required material from Tanenbaum and Walrand
online in PDF form.

Unfortunately, while Peterson and Davie admit the existence of the physical layer in Chapter 1, they
largely ignore it in the rest of their text. Sections 2.1 and 2.2 of their book are all the coverage they
provide of this layer. To compensate for this, I would like you to read some sections from Tanenbaum,
and sections from two different editions of a text by Walrand. The readings from Tanenbaum discuss
transmission media and introduce the use of Fourier analysis to understand transmitted signals. The
readings from Walrand reinforce the materials from Tanenbaum and include details on several widely
used schemes for encoding information for transmission.

I would like you to read §2.1 through §2.2 of Tanenbaum (pages 85-99 ). In addition, I would like
you to read most of §3.1 and §3.3 from the first edition of Walrand’s text (pages 69 - 79 and 97 -
108). Finally, §7.1.4 (pp. 209-213) of the second edition of Walrand’s text provides descriptions of some
standard encoding schemes.

Exercises

1. Sketch the encoding for the bit stream: 00011101 using

(a) bipolar modulation (i.e. NRZ),

(b) on-off keying (OOK),

(c) manchester encoding,

(d) non-return to zero with inversion (NRZI) in conjunction with the 4B/5B code, and

(e) frequency shift keying.

What advantages does each scheme possess? As you answer this question, think about you might
compare and contrast these various encoding schemes orally during our meeting.

2. Walrand presents an analysis that predicts the frequency spectrum found in the signal produced
when an alternating sequence of 0’s and 1’s is encoded using frequency shift keying (pp. 106-107
of 1st edition reading). He concludes that the resulting signal has a bandwidth of f1 − f0 + 5R
where f0 and f1 are the two carrier frequencies used and R is the rate at which binary symbols
are being transmitted. The “5” is his formula is the result of the claim that the bulk of the power
of the signal is found in the first five components of its Fourier series (for which he actually never
provides much justification).

I would like you to perform a similar analysis for one of the other broadband modulation schemes,
phase shift keying. Determine the spectrum for the signal generated when the binary sequence
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01010101... is encoded using PSK. Using Walrand’s assumption that the first five terms of the
Fourier series determine the bandwidth required for the signal, what bandwidth will this signal
require? How does this compare to FSK?

(Warning: Years ago I took a course using a text with quite a few typos, or, as one of my classmates
like to say “a lot of good exercises that are not labeled as such.” The derivation on pp. 106-107
of Walrand is a bit like that. The overall structure of the derivation is right and your derivation
will follow it closely, but there are definitely a few glitches along the way. I guess, in fact, that
part of the point of this problem is to encourage to read the text critically rather than to assume
it is always correct.)

3. Both Tanenbaum and Walrand touch on the importance of Fourier analysis to the understanding
of the transmission of signals through various channels. You might have noticed that while
Tanenbaum and Walrand both claim to be talking about “Fourier analysis”, their explanations of
what Fourier analysis is appear contradictory. Tanenbaum claims that Fourier showed that any
periodic function f(t) can be written as a sum of sines and cosines (page 90):

g(t) =
1

2
c+

∞∑
n=1

an sin(2πnft) +

∞∑
n=1

bn cos(2πnft)

Walrand, on the other hand, states that Fourier analysis is based on the fact that any signal can
be expressed as a sum of sine waves where a sine wave is defined to be a function of the form
(page 99 in 1st edition reading):

s(t) = A sin(2πft+ θ)

To make matters worse, in his first example of such a “sine wave” decomposition, Walrand uses
cosines instead of sines! ( see equation 3.12 in Walrand’s text).

(a) First, show that it is fair for Walrand to use “cosine waves” instead of “sine waves”. That
is, show how to express any cosine wave as a sine wave.

(b) Suppose that we restrict Walrand’s scheme by limiting our attention to sums of sine waves
with frequencies that are multiples of some base frequency. That is, we claim that any signal
can be expressed as a sum of the form:

g(t) =
1

2
c+

∞∑
n=1

An sin(2πnft+ θn)

Show that any sum, of this form can be rewritten in Tanenbaum’s form.

(c) Again restricting your attention to sums of sine waves whose frequencies are multiples of
some base frequency, show that any function written in Tanenbaum’s form can be written
as a sum of sine waves (i.e. no cosines allowed).

Hint: Almost all you will need to do these problems is the identity

sin(α+ β) = sinα cosβ + sinβ cosα

and the values of the sine and cosine functions at key values such as sin 0 = 0, cos 0 = 1,
sin(π/2) = 1 and cos(π/2) = 0. For part (c), you may want to remember the arctangent function
(although it isn’t really necessary).
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4. One reason Fourier analysis is important to communications is that it can be used to understand
how signals are distorted, even if transmitted on a channel that was somehow completely free
from noise.

This comes from the fact that “transmission lines do not distort sine waves; they only delay and
attenuate them” proven by Walrand (pages 99 and 100). Walrand’s proof depends on the use
of complex number (for which he appropriately apologizes). Now that you know all the ways in
which a sum of sine waves can be written (from the preceding problem) it is fairly easy to show
this result without using complex numbers. So, show that in a linear, time-invariant system with
input

x(t) = A sin(2πft)

the output will be a sine wave with the same frequency. Note, it is fine if you actually show that
the output is either a simple sine wave of the form

y(t) = B sin(2πft+ θ)

or a cosine wave of the same form or a sum of a sine and cosine:

y(t) = Bs sin(2πft) +Bc cos(2πft)

Hint: Use the formula for the sine of a sum from the previous problem’s hints to calculate the
output y′(t) produced in response to the input x′(t) = x(t+a). Use the linearity of the transmission
channel to express y′(t) in terms of the still unknown output function y(t). Now, consider y’(t)
for the two cases a = −t and a = 1

4f − t. This will give you two equations that you can solve for

y(t). The final expression should have the desired form, although it will be expressed in terms of
two unknown (but constant) values of y(t), namely y(0) and y( 1

4f ). For this problem, you may
also find it helpful to recall that sin−x = − sinx and cos−x = cosx.

5. As explained in both texts, different rays of light take different paths through a fiber and therefore
take different amounts of time to reach the receiver. If η1 and η2 are the indices of refraction of
the core and cladding of a fiber respectively, then the slowest rays make an angle θ with the axis
of the fiber, where cos θ = η2/η1. Determine a formula for the time it would take the fastest rays
(i.e. the rays propagating parallel to the fiber) to propagate a distance L. Determine the distance
the slowest rays travel along the fiber in the time it takes the fast rays to travel the distance L.
Assuming the transmission rate is R, how wide is a bit when it is first transmitted? How wide is
a bit by the time it has propagated a distance L? How do these results relate to formula (3.2a) in
Walrand?
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