CSI134 Lecture 33;

Sorting Wra

b U

D dNC

|ava

Announcements & Logistics

HW 10 released, due tonight @ 10 pm
Lab 8 graded feedback returned

« Lab 10 released

- Handout will be posted soon: server issues
- Very short lab on searching and sorting (today's lecture)

+ No prelab

ndividual lab but can discuss strategies with lab mate

CS134 Scheduled Final: Friday, May 17, 9:30 AM
Room: TCL 123

Do You Have Any Questions?

Last [Ime: Efficiency & Searching

Discussed recursive code for binary search

Discussed selection sort algorithm

-+ get_min_index helper function: debug in Lab |0

- Analyzed selection sort

. 0(n?) oo

O(n)

Time —»

O(1)

Number of Elements —

1 his Week

- Today we will discuss an improved (optimal) sorting algorithm

* Merge sort

+ Example of recursion: a divide-and-conqguer sorting algorithm

« [wo more lectures:

- Comparison of Python vs Java

+ OOP Wrap up and review

More Efficient Sorting:
Merge Sort

JTowards an O(nlogn) Algorithm

- There are other sorting algorithms that compare and rearrange elements in

different ways, but are still O(n?) steps

» Any algorithm that takes n steps to move each item n positions (in

the worst case) will take at least O(n?) steps
. To do better than n?, we need to move an item in fewer than n steps

* We can sort in O(nlog n) time if we are clever: Merge sort algorithm

(Invented by John von Neumann in 1945)

Merge Sort: Basic |dea

- If we split the list in half, sorting the left and right half are smaller
versions of the same problem

» Algorithm:

 (Divide) Recursively sort left and right half

* (Conquer) Merge the sorted halves into a single sorted list

n = len(lst)

12 219 | 4 11 /114 5 13

W
=

1st

m n//2

Merge Sort Algorithm

def merge_sort(1lst):

» Base case: If list Is empty or ninGiven a list lst, returns
contains a single element: it is a new list that is 1st sorted
already sorted in ascending order."""

n = len(lst)

 Recursive case:
base case

- Recursively sort left and if n ==0 or n ==
right halves return 1st
- Merge the sorted lists into a else:

single list and return it m = n//2 # middle
recurse on left & right half
sort_1lt = merge_sort(lst[:m])
sort_rt = merge_sort(lst[m:])

» Question:

- Where Is the sorting

| I
actually taking places # return merged list

return merge(sort_1t, sort_rt)

11

13

Merge Sort Example
121 219 | 4 |11 141 5 13
e S
121 21 9 4 11 14 5 13
2~ SN &~ N

121 2 [|19 | 4 |11 141 5 13

A" "ANA"

12(12119 ||4 |11 14| 5 |13
5

Merge Sort Exam

D|e

Q’E 1{7 _5{13
9 || 4 |11 1| 7| |14 5’(1?
L'V 4 h'V4
4 9 |11 3@1314
\/
9 | 11 12 3 /5 7 13|14
~ ,—
34 5 9 | 11|12 |13 | 14

Merging Sorted Lists

Problem. Given two sorted lists @ and b, how quickly can we merge
them Into a single sorted list?

a b
2 41 9 11 12 11 3.5 7113 14
1]

merged list C

Merging Sorted Lists

salil <= blj] ?

* Yes,all] appendedto C
+ No,b[j] appended to C
d
2 4] 9 11 12
1

1

3

5

/113 14

‘x

]

merged list C

Merging Sorted Lists

salil <= b[j] ?
- Yes,a[1] appended to C
+ No,b[j] appended to C

a b

2 4 9 11 12 1 3.5 711314

k merged list cC

Merging Sorted Lists

salil <= blj] ?

. Yes,a[i] appended to C
- No,b[j] appended to C
d
2 4 9111112 11 315 7 13 14
i ;
1

k merged list cC

Merging Sorted Lists

salil <= blj] ?

. Yes,a[i] appended to C
- No,b[j] appended to C
d
2 4 9111112 11 315 7 13 14
' ;
1

k merged list cC

Merging Sorted Lists

salil <= blj] ?

. Yes,a[i] appended to C
- No,b[j] appended to C
d
2 4 9111112 11 315 7 13 14
' !
1 3

k merged list c

Merging Sorted Lists

salil <= b[j] ?
- Yes,a[1] appended to C
+ No,b[j] appended to C

a b
2 4 9 11 12 1 35 7 113 14
i]

11213 |4 |5 I 9 | 11| 12 |13 | 14

*

merged list cC k

Merging Sorted Lists

def merge(a, b):
"""Merges two sorted lists a and b,
and returns new merged list c"""

Walk through lists a, b, ¢ # ir_\itiglige variables
" LA e 1,] =9,
maintaining current position of len a, len b = len(a), len(b)

c =[]
traverse and populate new list
while 1 < len_a and j < len_b:

indices 1, j, k

Compare ali] and b[J],

| | | if alil <= bljl:
whichever is smaller gets put In it alil <= bl

c.append(alil)

the spot of c[K] i 4= 1
else: |
Merging two sorted lists into E'igpind(b[l“

one is an O(n) step algorithm!

handle remaining values
. if 1 < len_a:
Can use this merge procedure c.extend(ali:])

to design Our recursive merge clif | < lenb:
sort algorithm! c.extend(b[j:])

return c

MERGE SORT

- 5
5, el e

N
e
—
1x)
Y,

ﬁif,....nl‘

MERGE SORT

V

MERGE SORT

%JLM |

@

5

3 5@
J-kalfll\ W %'%

i instructions.com/merge-sort/ m
v1.2, CC by-nc-sa 4.0

//

/

O

) -\3

Merge Sort Analysis: Basic |dea

- If you take CS256 (Algorithms), you will learn how to analyze the Big
Oh complexity of such recursive algorithms

- Wel'll give an inturtive explanation for now:

* # times can we divide the list in half until we hit the base case!
- ~log,n

» # steps to merge two lists each of size O(n)?
+ O(n)

» Merge occurs at every recursive step, so overall O(nlogn) steps

Runtime Comparisons: Big Oh

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10*° years, we simply record the algorithm as

taking a very long time.

2

n3

n nlog, n n 1.5" 2" n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=30 <lsec <l1lsec <1sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 <lsec <1lsec <1 sec 1sec 12,892 years 107 years very long

n=1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Summary: Searching and Sorting

We have seen algorithms that are
O(log n): binary search in a sorted list
O(n): linear searching in an unsorted list
O(nlogn): merge sort 0(n®) 0(n log n)
O(n?): selection sort

Important to think about 0(n)
efficiency when writing code!

Time —»

0C1)

Number of Elements —>

