CS134 Lecture 31:
Measuring Efficiency

Announcements & Logistics

HW 10 will be released today, due Mon @ 10 pm
Last HW
Lab 9 Boggle (Parts |1& 2) due VWed/Thurs at |0 pm

Make sure your completed game satisfies all of the expected behavior
mentioned In handout

Test your game thoroughly!
Not just "normal game behavior”

Stress test 1t with unexpected clicks, etc

CS134 Scheduled Final: Friday, May 17, 9:30 AM

Do You Have Any Questions?

L ast | Ime: Linked Lists

« Learned about linked lists

 Did a mix of list special methods using recursion and loops

- Many more methods are possible: see code on course schedule

loday

- Start discussing efficiency trade-offs surrounding certain operations, such
as append and prepend, to a data type such as Linked List

* Introduce how we measure efficiency in Computer Science
- Discuss efficiency of some classic algorithms
» Linear search

- Binary search

Linked List Efficiency

+ How can we compare the efficiency of the following LinkedList

operations!
» append an rtem at the end of a LinkedList
» prepend an item to the beginning of a LinkedList
» Any thoughts on which s "faster" (wrthout defining efficiency formally)
» append needs to traverse the entire list to find last item
» "number of steps" proportional to number of items
» prepend just needs to change self._rest of newly inserted item
» this Is Independent of how many items are in the LinkedList
« This is inturtively why append is more efficient than prepenc

» For more formal discussion: need to figure out what we want to measure

Measuring Efficiency

Measuring Efficiency

How do we measure the efficiency of our program!?
We want programs that run "fast”
How should we measure this!

One idea: use a stopwatch to see how long It takes

Reasonable proxy

But, what is 1t really measuring!

Suppose | run the same program on a really slow/old computer vs a
really powerful supercomputer

Stopwatch will measure different times!

Are we measuring how fast our program Iis or how fast the
computer executes It?

Measuring Efficiency

How do we measure the efficiency of our program!?
We want programs that run "fast”

How should we measure this!

One idea: use a stopwatch to see how long It takes

Measures how long a piece of code takes on this machine on
this particular input

Machine (and input) dependent
We want to isolate our program’s efficiency
How well does 1t scale to larger inputs?

How does it compare to other solutions to the same problem:
which one Is better?

Efficiency Metric: Goals

VWe want a method to evaluate efficiency that:
Is machine and language independent
Analyze the algorithm (problem-solving approach)
Provides guarantees that hold for different types of inputs
Some Inputs may be "easy" to work with while others are not
Captures the dependence on input size
Determine how the performance "scales" when the input gets bigger
Captures the right level of specificity
VWe don't want to be too specific (cumbersome)

Measure things that matter; ignore what doesn't

Platform/Language Independent

Machine and language independence

- We want to evaluate how good the algorithm s, rather than how
good the machine or implementation is

» Basic idea: Count the number of steps taken by the algorithm

« Sometimes referred to as the "running time"

5 ; UM
: ‘ £ {
e ¢ .
)
P ¢
‘L' g ’ .
:v A oL
' : £ a0
‘ P o —
! . ., v .
] " [i i
. o ' {
- -t o |
. 5
S ' - ~0
] - 1 . "
!] . =
.
1 5> ' - ot >
| ' “ :
11 o4 ot Python
'
v : -
| a .ot
r - . '
“
' } - 5 - U
’ : P : : 3
{ ' . LUl
oy] -
! » !
- [} y
& '
v
. 9
: % S (| Py
. /
~ Al ‘ :
0
N \
N N Ty 13
\ \ N
\ \ wan /
: §

Worst-Case Analysis

We can't just analyze our algorithm on a few inputs and declare victory

Best case. Minimum number of steps taken over all possible
inputs of a given size

Average case. Average number of steps taken over all possible

inputs of a given size

- Worst case. Maximum number of steps taken over all possible
inputs of a given size,

Benefit of worst case analysis:

Regardless of input size, we can conclude that the algorithm always
does at least as well as the pessimistic analysis

Dependence on Input Size

We generally don't care about performance on "small inputs”

Instead we care about "the rate at which the completion time grows"
with respect to the input size

For example, consider the area of a square or circle: while the formula
for each Is different, they both grow at the same rate wrt radius

+ doubling radius increases area by 4x, tripling increases by 9x

x ax . 9A A 4A 9A
r o r | 7 |
| | | |

3r 3r

Doubling r increases area 4 Xx. Doubling r increases area 4 X.
Tripling r increases area 9X. Tripling r increases area 9X.

Dependence on Input Size: Big-O

Big-O notation in Computer Science Is a way of quantifying (in fact,
upper bounding) the growth rate of algorithms/functions wrt input size

For example:

A square of side length r has area O(r?).

A circle of radius 7 has area O(r?).

ij \4A’) 9 A’ '= E 4A gA
IT'I | \|/ \ / | r | I |
2r | | 2r | !

3r 3r

Doubling r increases area 4 Xx. Doubling r increases area 4 X.
Tripling r increases area 9X. Tripling r increases area 9X.

Dependence on Input Size: Big-O

Big-O notation captures the rate at which the number of steps taken

by the algorithm grows wrt size of input n, "as n gets large”
Not precise by design, it ignores information about:
Constants (that do not depend on input size n), e.g. 100n = O(n)

Lower-order terms: terms that contribute to the growth but are
not dominant: O(n? + n + 10) = O(n?)

Powerful tool for predicting performance behavior: focuses on what

matters, ignores the rest
Separates fundamental improvements from smaller optimizations

VWon't study this notion too formally: covered in CS136 and CS256!

AD

DENC

VS Pre

DENC

Let's revisit append vs prepend efficiency

. Big Oh

How does the cost of append grow with number of items in LinkedList?

Need to traverse len(LinkedList) items at least

Grows linearly with input size

How does the cost of prepend grow with number of items In

LinkedList!

Independent of input size!

We call this O(1) or constant time:

Essentially saying does not grow as input size gets large

Lists (Arrays) vs. Linked Lists
cfficiency Trade Ofts

L Ists vs Linked Lists

- Linked Lists: "pointer-based’ data structure, items need not be
contiguous In memory

ol

head _value _value

_rest _rest

- Arrays: index-based data structure rtems are always stored
contiguously iIn memory (think of a Python built-in list as an array)

L Ists vs Linked Lists

- Linked Lists: Can grow and shrink on the fly: do not need to know
size at the time of creation (therefore no wasted space!)

ol

head _value _value

_rest _rest

- Arrays: index-based data structure rtems are always stored
contiguously iIn memory (think of a Python built-in list as an array)

Array vs Linked Lists

Inserts at the beginning: which one Is better?

>

head _value

_rest

head

Array vs Linked Lists

Linked list steps:
Point head to new element
Point rest of new element to old list
These steps don't depend on size of list

Therefore, run-time is constant, that is, O(1) time

_value _value _value

_rest _rest _rest

Array vs Linked Lists

- Now consider an array-based list

- o insert at index O, we need to shift every element over by one spot

» This takes time proportional to the size: linear time or O(n)

S50 when are arrays more efficient!

* When indexing elements: they give direct access O(1)

» Linked list: we need to traverse the list to get to the element O(n)

So Which i1s Better?

[t depends!
Think about what operations are a priority in your program!
Choose accordingly

Let's take an example of an application where one of the data
structures Is way more efficient than the other

Searching In a Sequence

Search

Search. Given an input sequence seq, search if a given 1tem is in the
sequence.

» For example, If a name Is In a sequence of student names
Input: a sequence of n items and a query item

* For now suppose this can be in any order
Output: True If gquery item Is In sequence, else False
Can use 1N operator to do this (calls __contains__)

- But wrthout knowing how it works, can't analyze efficiency

Let's figure out a direct way to solve this problem

Searching In a Sequence

* First algorithm: iterate through the ritems in sequence and compare each

item to query

def linear_search(item, seq):

for elem in seq:

1f elem == 1tem:

return True

return False

>

Might return early If item Is first elem
In seq, but we are interested In the
worst case analysis; this happens
if tem Is not in seq at all

Searching In a Sequence

In the worst case, we have to walk through the entire sequence

Overall, the number of steps is linear in n : we write O(n) in Big Oh

def linear_search(item,

seq):

for elem in seq: —

1f elem == 1tem:

return True

return False

Loop runs i items
In worst case

\L

One equality check per
teration: assume checking
two items Is one step

Searching in an Array

- (Can we do better?
- Not If the elements are In arbitrary order
- What If the sequence Is sorted!

- Can we utilize this somehow and search more efficiently?

How do we search for an item (say 10) in a sorted array!

Let's Play a Game

'm thinking of a number between O and [00...
It you guess a number, I'll tell you erther:
* You've guessed my number!
My number Is larger than your guess
My number i1s smaller than your guess
What Is your guessing strategy!

What if | picked a number between O and | million?

Example: Dictionary

- How do we look up a word in a (physical) dictionary!?

- Words are listed In alphabetical order

544
hug (h+g) vb. huggin,
and 18th ccn'".;‘ 7crl$ E-r; u': '.’:'":: Euenl‘oﬂ O L’rngom'mc" ¢y :‘::‘l? L humanitarian 545
intei 1
noy! o) MG TN QNN v ot E) cultural movement of the Re,
L3 9 after d esical Studi naissance, baseq
o 2 pomania; ,‘._""lfﬂ.,,‘,:'.;?e eltare o7 M hunchback
(hjuz,mani'teoryony ©, A9 b
orholoce ¥ o (abuge, <71 gy el laree (o S | havng he e -:!,'7:.'.'.':‘-'-'.’,.‘,’.‘:‘:;::!. R 'u.::uﬂ‘.;: iridescent
- authoritive book o6 FcE 1 2 Rare sedrty, g humanity " jumeniny . o e, um; i 1085 specizcy
- : secrec. - adv, . ; Tk !
P Y o ers, S0 oS e P il o, 1o
aorev. for-. 1. Brit hire - . & n el
“'Pr'oor:ew""m:;;"f’ < m"(lo" o anu_;,r Cent p.m-nlze or -nise ':l';? juzmo, : dr'-"“:h cl.mme)'
ey beadquarters. : ; ::::n:r nmnnul""x:’l'ion{' 0 make or
for opposed annexation gt or -l
E humankind (.njwm:n'k.mai)ﬂ,:",':: e
u"m la;:":':f,“‘ huh (spelling race; humanity. . uman
for Home

hoy

manly (‘bjumanl; 3
"o'f'mam.y S. I{u hum:n“v ';,:{:'"man Powers
hui iner.
humanity.

id (*bju:ms,naud

manol i 12,0
S g e
(in science fiction) a m::,"'g,'mf:L S
resembling a hnlu’nuup' being. Creature
uman rigl [o th
EEELE 0 e oo

e ('haml .
hum l':nprﬂglbu‘: conscious .

: my_humble opinion. 3. e
ol o ey R ﬁ"c.'.;,f':;’“'hl
humble: bumiliatc. 5% lower in status. ?g;me

Jumus the groung)

i

i
i

§

i
L2
ik
i
H o

H
f:
]

4]

Il
!o
!l
]
{f

fh
i
i
i
|

i
:
i
i
i

s
i
I
Ppe
fh
¥

iy
i
1
i
il
!
i

|
/

i
i

i
il

¥
.
=

i

Example: Dictionary

Flndlng the definition of "octopus”
Open pages at ~half, is word

| on left or right?
| Open pages at ~half, is word

on left or right?
Open pages at ~half, is

Oc
ord on left or right?
/‘ Oct |
Find the word’ ‘ Octo [-I

Open pages at ~half is word
on left or right?

DDUS

How Good Is [his Method!?

Goal: Analyze # pages we need to look at until we find the word

We want the worst case: possible to get lucky and find the word right
on the middle page, but we don't want to consider luck!

Fach time we look at the "middle” of the remaining pages, the number of
pages we need to look at is divided by 2

A 1024-page dictionary requires at most | | lookups:
1024 pages, < 512, <256, <128, <64, <32, <16, <8, <4, <2, <I| page.

Only needed to look at | | pages out of 1024 !

Challenge:VWhat it we have an n page dictionary,

what function of n characterizes the (worst-case)
number of lookups!

Logarithms; our favorite function

Logarithms are the inverse function to exponentiation

log, n describes the exponent to which 2 must be raised to produce n
That is, 21°%2" = p

Alternatively:

» log, n (essentially) describes the number of times n must be divided
by 2 to reduce it to 1 or below

For us, here's the important takeaway:

» How many times can we divide n by 2 until we get down to 1

- = log,n

O(log n)

When you double the number of
elements, it only increases the number
of operations by |

D

W

2 items in the list, | operation

=

log 2 = |

number of operations
N

o

When you have 4 items, increases
operations to 2

log 4 =2

n (items in list)

When you have 8 items, only 3
operations

log 8 = 3

Binary Search

The recursive search algorithm we described to search in a sorted
array I1s called binary search

[t can be much more efficient than a linear search

Takes =~ log n lookups if we can index into sequence efficiently
Which data structure supports fast access/indexing?

Accessing an item at index [In an array requires constant time

Accessing an item at index 1 in a LinkedList can require traversing
the whole list (even If it is sorted!): linear time

To get a more efficient search algorithm, it is not only important to use
the right algorithm, we need to use the right data structure as well

Binary Search

Base cases! When are we done!
It list 1s too small (or empty) to continue searching, return False

I tem we're searching for Is the middle element, return True

Check middle

v
B

mid = n//2

Binary Search

Recursive case:
Recurse on left side iIf item 1s smaller than middle

Recurse on right side If item is larger than middle

(

~\

If item < a_Ist[mid], then need

to search in a_Ist[:mid] x

mid = n//2

Binary Search

Recursive case:

Recurse on left side if item 1s smaller than middle

Recurse on right side If item is larger than middle

(

If item > a_Ist[mid], then need
to search in a_lst[mid+1:]

~\

N\

I

mid = n//2

def binary_search(seq, item):
"HHUAssume seq i1s sorted. If item 1is
in seq, return True; else return False.

n = len(seq)

?fbﬁsica?e : Technically, there 1s one
return False small problem with our

mid = n // 2 implementation. List splicing

mid_elem = seq[mid] s actually O(n)!

base case 2

if item == mid_elem:
return True

recurse on left
elif item < mid_elem:
left = seq[:mid]
return binary_search(left, item)

recurse on right
else:
right = seqlmid+1:]
return binary_search(right, item)

Binary Search: Improvec

def binary_search_helper(seq, item, start, end):
'''"Recursive helper function used 1in binary search''’

base case 1
if start > end:
return False

Passing start/end indices as
arguments avoids the need
to splicel

mid = (start + end) // 2
mid_elem = seq[mid]

if item == mid_elem:
return True

recurse on left
elif item < mid_elem:

return binary_search_helper(seq, item, start, mid-1)
recurse on right

else:
return binary_search_helper(seq, item, mid+1, end)

def binary_search_improved(seq, item):

return binary_search_helper(seq, item, 0, len(seq)-1)

BINARY SEARCH

More on Big Oh

Big-O Notation

- lells you how fast an algorithm is / the run-time of algorithms

But not in seconds!

- Tells you how fast the algorithm grows in number of operations

O(log n)

Big O" Number of Operations

Understanding Big-O

Notation: n often denotes the number of elements (size)

+ Constant time or O(1): when an operation does not depend on the
number of elements, e.g.

- Addition/subtraction/multiplication of two values, or defining a
variable etc are all constant time

* Linear time or O(n): when an operation requires time proportional
to the number of elements, e.g.:

for 1tem 1n seq:
<do something>

Quadratic time or O(n?): nested loops are often quadratic, e.g,
for 1 i1n range(n):
for 3 in range(n):

<do something>

Big-O: Common Functions

Notation: n often denotes the number of elements (size)

Our goal: understand efficiency of some algorithms at a high level

0(n%)
O(Cn)

Time —»

0C1)

Number of Elements —

