CS 134 Lecture |6;
lesting & Files

Announcements & Logistics

No HW due tonight
Lab 5 today/tomorrow (no prelab); due Friday noon (after midterm!)
Midterm reminders:

Review: from /-9pm

Exam from 6-/:30pm OR 8-9:30pm

Both exam and review are in Bronfman Auditorium

Fxam only includes material up to last week (sets)

Sample Exam. Sample solutions posted (many possible ans)

New Instructor Help Hours Schedule: Wed -4 pm, Thurs -4 pm

Do You Have Any Questions!?

https://glow.williams.edu/courses/3876190/files?preview=283724050

L ast [Ime

* Explore another new Python type:

¢ sets: unordered collection

- Use tuples and sets in example functions

Lists
list(), I[]

« Mutable
« Ordered

» Store any type, even
a list

+ Dynamic datasets

* Indexing, slicing, len,
in & not In, iteration
in for loop

Lists, Tuples, Sets

Tuples
. tupIE(); ()

 Immutable
« Ordered

- Store any type, even
a tuple

« Static ordered
collections

* Indexing, slicing, len,
N & not In, rteration
in for loop

Sets

- set()

* Mutable

»+ Unordered

- Immutable types, no

duplicates

» Dynamic unordered

collections

- No indexing/slicing

* len, in & not In,

iteration in for loop

xample In Class:

Using set to implement get_candidates()

Jloday's Plan

» Discuss testing and debugging strategies (more on this in Lab 5)

« Start discussion on how to read from and iterate over files

- Juple example to solve Madlibs problem

[esting and Debugging

lesting vs Debugging

* Bugs are mistakes in programs that cause them to behave incorrectly

* Debugging: Process of finding and fixing bugs in your code

* These can be syntax errors, runtime errors, logical errors

» Testing: Process of revealing the presence of bugs

 Ensuring that your code meets the specifications

» Has the correct (expected) behavior on all inputs

lesting vs Debugging

* Bugs are mistakes in programs that cause them to behave incorrectly
* Debugging: Process of finding and fixing bugs in your code
* These can be syntax errors, runtime errors, logical errors

» Testing: Process of revealing the presence of bugs

One of the most famous bugs was an actual moth discovered by Grace Hopper in a
relay when she was a programmer for Harvard’s Mark II Aiken Relay computer in
1947. She had been a math professor at Vassar, was instrumental in the development

‘-'(Tv&&,\ V&”‘/J 7 ety i
1700 | STarhed LGS Top il)
R o

Flest lachkal cder o-{' K : g
iy o ket L il i L“h‘\ ound

Types of Errors

» Syntax errors: Occurs when the code does not follow Python
syntax rules

» E.g, Missing colon after function definitions or It statements

* |ndentation issues

* Runtime errors: Occur when functions are invoked and variables
are replaced by their values at runtime

» E.g, divide by zero

* Logical errors: Occur due to mistakes in logic while implementing
the functionalrty

How to A

D

broach Debugging

+ Read the Python error messages

- ells you line numbers and program trace

* Print statements

* Print your accumulation variables, loop variables

- Figure out how Its changing and If it matches the logic

* Rubber duck debugging

Example in Notebook

HAVE
YOU
TRIED

EXPLAININGIT
TO THE
RUBBER DUCK?

lesting Functions

- Many ways to test individual functions:

- Interactive python:
» Import into python3 (interactive python) and call function

- Copy paste into an interactive notebook and call function

+ Put function calls inthe 1T __name___ == "__main__":block

and run file as a script

- Add test cases to runtests. py

lesting & Debugging [ips

Edge cases:
Extreme cases that the function might not handle correctly

» Test cases that force every conditional branch in the code to be
executed at least once

Loops:
» Supply Inputs that make the loop execute zero & most # times

Ensure any changing variables such as accumulation variables are
updated appropriately

Indexing:
- ensure Indices are always legal, check for "off by one" errors

- Comment out offending code until something worsel

Unexpec

Wow, a different
eryor message...
Finally some progress!

s

oys of Debugsing Code

https://WWW.lIHK@(.]IH.(.O[T]/ puise/unexpecLed-jOys-aepugging-coae-Cnris-nissen

The 3 Stages of Debuyging

At some point in each of our lives, we must face errors in our code.
Debugging is a natural healing process to help us through these times.
It is important to recognize these common stages and realize that
debugging will eventually come to an end.

Y
?

This stage is often characterized by such phrases as

"What? That's impossible,” or "I know this is right." A

strong sign of denial is recompiling without changing
any code, "just in case."

Bargaining/Seli-Blame

Several programming errors are uncovered and the
programmer feels stupid and guilty for having made
them. Bargaining is common: "If | fix this, will you
please compile?" Also, "I only have 14 errors to go!"

Cryptic error messages send the programmer into a
rage. This stage is accompanied by an hours-long
and profanity-filled diatribe about the limitations of
the language directed at whomever will listen.

Following the outburst, the programmer becomes
aware that hours have gone by unproductively and
there is still no solution in sight. The programmer
becomes listless. Posture often deteriorates.

The programmer finally accepts the situation, declares
the bug a "feature”, and goes to play some Quake.

Testing I1s helpful!

* Credit to u/Hujohner

1 HINC

; PLETEL)

: - KS
Y asdllll | "lli

Ty ALLYOUR

11\ 4 —~—

'.ZB _I,ﬁul-g

1]1]3 1]1]3

p I 11
ROKEN ROKEN

runtests.py

runtests.py

runtests.py typically has ~5 sections:

* Imports, datasets, our tests, your tests, and the test runner

» Imports: makes the functions we wrote in other files usable in this one
» Datasets: loads-in some handy datasets for testing the code

» Our Tests: Some basic tests we provide to see If your functions have

minimal functionality

* Your Tests: A place where you should add your own tests, for ensuring

maximal functionalrty

» Test Runner: Gathers command-line input (e.g., 'g2') and runs the tests

specified in the body

runtests.py

» To add your own tests: copy a similar example from our tests into the

function body, update the parameters and print statements.

def my first choice_votes_ test():
Replace the following line with your own test!
print("YOU HAVEN'T YET WRITTEN YOUR OWN TEST FOR first_choice_votes!")

def my_first _choice_votes_test():
result = first_choice_votes(aamir_beth_chris_ballots())
print("first_choice votes(aamir_beth_chris_ballots())")
print(" should return: ['Aamir', 'Beth', 'Chris', 'Aamir']")
print(" vyours returned: " + str(result))

- |t you're using a function header already provided in the .py file, then

this function will run!

runtests.py

- It you've made a brand new function with a new name, you'll need to

make sure that function is called in the Test Runner

if _ name_ == "_ main__
args = get_command_line_args()
if len(args) == 0: # if there are no command-line arguments
print("Please specify the question: ql1, q2, g3, 94, 95, g6, q7, g8, g9")
else:
which_question = args[@] # reads the first command-line argument
if which_question == "qgl1":
first choice_votes_ test1()
first choice votes test2()
my first choice votes_test()

Reading Data from Files

Working with Files In Python

File 1/O Is a very common and important operation
open(filename) is a built-in Python function for working with files

filename is a path to a file as a string

Using open () withinawith .. as code block, we can iterate over the lines
of a text file just as we Iterated over strings and lists in previous lectures

Opening Files:with .. as

Path to file on computer as a string

with open(filename) as input file:

do something with file

Variable name for your file

Note. (syntax) Indentation defines the body of the
with block where the file I1s open. File automatically
closed after with...as block

terating over Lines In a rile

- Withinawith open(filename) as input_file: block we can
iterate over the lines In the file just as we would iterate over any sequence
such as lists, strings, or ranges

- The end of a line In the text file Is determined by the special newline

character "\n"

Example: We have a text file mountains. txt within a directory data.
Ve can iterate and print each line as follows:

with open("data/mountains.txt") as book:
for line 1in book:

print(line) Variable name for your file

-

Path to file on computer as a string
With their kingly forest robes, to the sky,

0, proudly rise the monarchs of our-.

Where Alma Mater dwelleth with her chosen bar,, _, .
\N " between each line

And the peaceful river floweth gently by.

terating over Lines In a rile

» Because the end of the line in a file is a newline character "\n' and
when we print(a_string) a newline character is added to the
end..we end up with an empty newline between each printed line!

with open("data/mountains.txt") as book:
result = []
for line in book:
result += [line]
print(result)

['O, proudly rise the monarchs of our mountain land,\n',
'With their kingly forest robes, to the sky,\n',

'Where Alma Mater dwelleth with her chosen band,\n',
'And the peaceful river floweth gently by.\n']

Removing Leading/ Trailing Whitespace from a String

» Because the end of the line in a file is a newline character "\n' and
when we print(a_string) a newline character is added to the
end..we end up with an empty newline between each printed line!

- Let's write a function that will remove leading and trailing whitespaces.

s = '\n \t. String with\t different\nspaces.\r\n\t'
'"\n' newline '"\t' newline '"\r' return
Spaces — [I\n|’ I\tl’ I\rl’ i I]

>>> len('\n'")
1

'\n"' s one character! The backslash escapes the character.

Removing Leading/ Trailing VWhitespace from a String

Let's write a function that will remove leading and trailing whitespaces.

def strip(line):
handle empty line somehow
return line?
Spaces — [I\nI’ I\tl, |\r|’ i |]

find where the words start
look at each character
1f 1it's a space...keep looking
keep track of indices looked at

find where the word ends
look at each character 1in reverse
1f 1t's a space...keep looking

keep track of 1indices looked at

return the string between the start and end index

Removing Leading/ Trailing Whitespace from a String

Let's write a function that will remove leading and trailing whitespaces.

def strip(line):
1f not line: # handle empty line
return line
Spaces — [I\nl’ I\tl, |\r|’ i |]

find the first not-space
start_index = 0
while start_index<len(line) and line[start_index] in spaces:

start_index += 1

find the last not-space

end _index = len(line)-1

while end_index>0 and linel[end_index] in spaces:
end_index -= 1

return line[start _index:end index+1]

>>> 5 = '\n \t String with\t different\nspaces.\r\n\t'
>>> strip(s)
'String with\t different\nspaces.'

Useful String and List Functions In File Reading

- When reading files, we may need to use some common string and list
operations to work with the data.

- We'll learn about the built-in features python has for these later in the semester,
but we can write our own with iterating over strings and accumulator variables!

strip(line): Remove any leading/trailing white space or‘\n”

split(line, ',"'): Separate a comma-separated sequence of
words and create a list of strings

» join("' ', lines): Create asingle "big” string with words separatec
by spaces instead of commas

- count_appearances(ele, let): Countthe occurrence of
various elements

...and so on!

