
CS 134 Lecture 7:  
Lists, Ranges and Loops

Announcements & Logistics
• Lab 3 was released Friday

• Builds upon everything we’ve learned so far (including today’s content):

• Iterating over sequences (strings, lists, ranges) as well as conditionals

• More "moving pieces" than Lab 2

• Please come to help hours if you have questions (or to say hi!)

• Prelab due at the beginning of lab

• HW 3 due tonight at 10 pm on Glow

Do You Have Any Questions?

Last Time
• Introduce iteration using for loops to iterate over sequences

• Discussed sequence indexing using [] and using the len() function

• Introduce a new data type (which is also a sequence):

• list

Today’s Plan
• Learn more about sequences

• sequence slicing
• in operator and not in operator

• Iterating over and accumulating using lists

• New sequence: range

https://docs.python.org/3/library/stdtypes.html#typesseq-range

Sequences in Python: Strings and Lists
• Sequences in Python represent ordered collections of elements:

e.g., strings, lists, ranges, etc.

• A string is an ordered sequences of individual characters

• Example: word = "Hello"

• A list is a comma separated, ordered sequence of values

• Example: numList = [1, 5, 8, 9, 15, 27]

• In CS, we use zero-indexing, so we say that 'H' is at  
index 0,'e' is at index 1, and so on

• We can access each character of a sequence using indices

>>> word[1]

'e'

>>> numList[4]

15

Slicing Sequences

>>> vowels = 'aeiou'

>>> vowels[0:2]

'ae'

>>> numList = [2, 4, 8, 16]

>>> numList = [0:-1] # everything except last

[2, 4, 8]

• We can extract subsequences of a sequence using the slicing operator [:]

• For a given sequence var,  
 
var[start:end]  
 
returns a new sequence of the same type that contains the elements starting at
index ‘start’ (inclusive) and ending at index ‘end’ (exclusive)

Slicing: Step and Defaults
• We can extract subsequences of a sequence using the slicing operator [:]

• For a given sequence var,  
 
var[start:end:step]  
 
returns a new sequence starting at index ‘start’ (inclusive), ending at index
‘end’ (exclusive), using an (optional) increment of ‘step’

• By default (if not specified):

• start defaults to 0 (the beginning of string)

• end defaults to len(var) (end of string)

• step defaults to +1

Examples
>>> evens = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

>>> evens[0:5]

[2, 4, 6, 8, 10]

>>> evens[:8:2]

[2, 6, 10, 14]

>>> evens[::2]

[2, 6, 10, 14, 18]

• Question. How would we reverse a sequence using slicing?

>>> name = "Ephelia"

>>> name[::-1]

'ailehpE

Testing Membership: in Operator
• The in operator in Python is used to test if a given sequence is a

subsequence of another sequence; returns True or False

>>> "Williams" in "Williamstown"
True

>>> "w" in "Williams" # capitalization matters
False

>>> dogList = ["Wally", "Velma", "Pixel", "Linus"]

>>> "Linus" in dogList
True
>>> "Dizzy" in dogList
False

Testing Membership: not in Operator
• The not in operator does the opposite of in

var not in seq

same as

not var in seq

 preferred way (and more readable)

Summary: Sequence Operations

All of these operators work on both strings and lists!

Operation Result

seq[i] The i'th item of seq, when starting with 0

seq[si:ee] slice of seq from si to ee

seq[si:ee:s] slice of seq from si to ee with step s

len(seq) length of seq

seq1 + seq2 The concatenation of seq1 and seq2

x in seq True if x is contained within seq

x not in seq False if x is contained within seq

Exercise: palindromes
• A palindrome is a string that is the same forwards and backwards
• The following strings are all examples of palindromes:

• “” (any string with length 0)
• “x” (any string with length 1)
• “aba”
• “racecar”

• The following strings are not palindromes:
• “aA” (Case mismatch)
• “12321 ” (Un-matched space “ “ at end of string)

• Write a function that iterates over a given list of strings s_list,
returns a (new) list containing all the strings in s_list that are the
same forward and backwards (ignoring case). 
 

Exercise: palindromes

>>> palindromes(["anna", "banana", "kayak", "rigor", "tacit", "hope"])

['anna', 'kayak']

>>> palindromes(["1313", "1110111", "0101"])

['1110111']

>>> palindromes(["level", "stick", "gag"])

['level', 'gag']

Exercise: palindromes
What is our high level algorithm, in words?

• Go through each word in s_list. If the word is a palindrome,
append it to our “solution list”. After reaching the end of our list, our
“solution list” should contain all of the palindromes.

for loop

function that
returns a boolean

+=

“accumulator”
variable

conditional

Solution: palindromes

def palindromes(s_list):

 '''Takes a list of string s_list and returns a new list

 containing strings from s_list that

 are the same forwards and backwards'''

 solution = [] # initialize the accumulation variable

 # iterate over each item in seq

 for item in s_list:

 # check if it's a palindrome

 if is_palindrome(item):

 # append to accumulation variable

 solution += [item]

 # return what we accumulated

 return solution

How do we implement
is_palindrome(word)?

is_palindrome(word)

What is our high level algorithm, in words?
• Multiple correct algorithms exist!

• Return true if word is equal to a reversed copy of word

is_palindrome: Using Slicing

def is_palindrome(word):

 '''Takes as input a string word and returns True

 if word is the same forward and backward. Otherwise

 returns False'''

 # fill in

 return word == word[::-1]

is_palindrome(word)

What is our high level algorithm, in words?
• Multiple correct algorithms exist!

• Return true if word is equal to a reversed copy of word
• Return true if the first character is equal to the last character AND the

second character is equal to the second to last character AND the third
character is equal to the third to last character AND …
• How do we write code that handles arbitrarily long strings?

• We want a loop that runs len(word) // 2 times
because we want to compare len(word) // 2 pairs of
characters

Ranges

Ranges (another sequence!)
• Python provides an easy way to iterate over numerical sequences using the

range data type, another sequence

• When the range() function is given two integer arguments, it returns a
range object of all integers starting at the first and up to, but not including,
the second; note: default starting value is 0

• To see the values included in the range, we can pass our range to the
list() function which returns a list of them

>>> range(0, 10)
range(0, 10)

>>> type(range(0, 10))
range

>>> list(range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(0, 10)
range(0, 10)

>>> type(range(0, 10))
range

>>> list(range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

• Python provides an easy way to iterate over numerical sequences using the
range data type, another sequence

• When the range() function is given two integer arguments, it returns a
range object of all integers starting at the first and up to, but not including,
the second; note: default starting value is 0

• To see the values included in the range, we can pass our range to the
list() function which returns a list of them

Ranges (another sequence!)

A range is a type of sequence
in Python (like string and list)

To see elements in range, pass
range to list() function

First argument omitted,
defaults to 0

Iterating Over Ranges

i = 0
i = 1
i = 2
i = 3
i = 4

what does this print?

for i in range(5):

 print('$' * i)

$
$$
$$$
$$$$

• In addition to iterating over strings
and lists, we can use a for loop and a
range to simply repeat a task.

• This loop print a pattern to the
screen.

Looks a lot like [0, 1, 2, 3, 4]

Using Range For Parallel Iteration
• This also a really convenient way for iterating over two lists in parallel
• Say we wanted to iterate over two lists
• chars = ['a', 'b', 'c'] and nums = [1, 2, 3]

• And form a new list ['a1', 'b2', 'c3']

• Here’s how we’d do it

chars = ['a', 'b', 'c']

nums = [1, 2, 3]

for each item in chars

 # add current char to matching num

 # accumulate in a list

initialize accumulation variable

>>> char_nums

['a1', 'b2', 'c3']

Using Range For Parallel Iteration
• This also a really convenient way for iterating over two lists in parallel
• Say we wanted to iterate over two lists
• chars = ['a', 'b', 'c'] and nums = [1, 2, 3]

• And form a new list ['a1', 'b2', 'c3']

• Here’s how we’d do it

chars = ['a', 'b', 'c']

nums = [1, 2, 3]

char_nums = []

for i in range(0, len(chars)):

 cnum = chars[i] + str(nums[i])

 char_nums = char_nums + [cnum]

Accumulator Variable

Loop Variable

>>> char_nums

['a1', 'b2', 'c3']

is_palindrome: Using Range

def is_palindrome_range(string) :

'''Takes as input a string word and returns True

 if word is the same forward and backward. Otherwise

 returns False'''

 for i in range(len(string) // 2) :

 if string[i] != string[-(i+1)] :

 return False

 return True

Loops: Take-Aways
• for..Loops allow us to look at each element in a sequence

• The loop variable defines what the name of that element will be
in the loop

• An optional accumulator variable is useful for keeping a running
tally of properties of interest

• Indentation works the same as with if--statements: if it's indented
under the loop, it's executed as part of the loop

Importing Functions vs Running as a Script
• Question. If you only have function definitions in a file funcs.py,

and run it as a script, what happens? 
% python3 funcs.py 

• For testing functions, we want to call /invoke them on various test
cases, in Labs, we do this in a separate file called runtests.py

• To add function calls in runtests.py, we put them inside the

guarded block if __name__ == "__main__":
• The statements within this special guarded are only run when the file is

run as a script but not when it is imported as a module

• Let's see an example

shikhasingh@Shikhas-iMac cs134 % python3 foo.py

__name__ is set to __main__

shikhasingh@Shikhas-iMac cs134 % python3

Python 3.10.0 (v3.10.0:b494f5935c, Oct 4 2021,
14:59:20) [Clang 12.0.5 (clang-1205.0.22.11)] on
darwin

Type "help", "copyright", "credits" or "license"
for more information.

>>> import foo

__name__ is set to foo

foo.py

test the role of __name__ variable

print("__name__ is set to", __name__)

Running foo.py as a script

Importing it as a module

Takeaway: if __name__ == "__main__"

• If you want some statements (like test calls) to be run ONLY when
the file is run as a script

• Put them inside the guarded if __name__ ==
"__main__" block

• When we run our automatic tests on your functions we import them
and this means name is NOT set to main

• So nothing inside the guarded if __name__ ==
"__main__" block is executed

• This way your testing /debugging statements do not get in the way

