
CS134 Lecture:  
Sequences and Loops

Announcements & Logistics
• Homework 3 will be posted to GLOW, due next Monday @ 10 pm

• Lab 1 graded feedback will be released today

• Instructions on how to view feedback on course webpage
• It may seem like an odd procedure, but we're using real-world

software development practices

• Lab 2 due today 10pm / tomorrow 10pm

• No class on Friday: Winter Carnival

• Lab 3 (with a prelab) will be released on Friday

Do You Have Any Questions?

Last Time
• Looked at more complex decisions in Python

• Used Boolean expressions with and, or, not

• Chose between many different options in our code
• if elif else chained conditionals

Today’s Plan
• Introduce iteration using for loops to iterate over sequences

• Introduce a new data type which is also a sequence:
• Lists

• We will discuss sequences more on Monday

Sequences in Python: Strings
• Sequences in Python represent ordered collections of elements:

e.g., strings, lists, ranges, etc.

• Strings (type str) are ordered sequences of individual characters

• Example: word = "Hello"

• 'H' is the first character of word, 'e' is the second character,
and so on

• In CS, we use zero-indexing, so we say that 'H' is at  
index 0,'e' is at index 1, and so on

• We can access each character of a string using these indices

How Do Indices Work?
• Can access elements of a sequence (such as a list) using its index

• Indices in Python are both positive and negative

• Everything outside of these values will cause an IndexError.

"W i l l i a m s"
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

Note: Most other languages do not support negative indexing!

Accessing Elements of Sequences

'W i l l i a m s'
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1>>> word = "Williams"

>>> word[0] # character at 0th index?
'W'
>>> word[3] # character at 3rd index?
'l'
>>> word[7] # character at 7th index?
's'
>>> word[8] # will this work?

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: string index out of range

Sequence Length
• The len(seq) function returns the length of the sequence seq

• Even though we zero-index, we still include the total number of
elements in the length

>>> word = "Williams"

>>> len(word) # total number of characters

8

>>> word[len(word)] # will this work?

>>> word[len(word)-1] # what about this?

'W i l l i a m s'
0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: string index out of range

's'

Iteration Motivation: Counting Vowels
• Problem: Write a function count_vowels(word) that takes a string

word as input and returns the number of vowels in the string (an int)

• We'll create a function is_vowel() to help us: 

def count_vowels(word):

 '''Returns number of vowels in the word'''

 pass 

>>> countVowels("Williamstown")

4

>>> countVowels("Ephelia")

4

is_vowel(char)

def is_vowel(char):

 """Takes a char (str) returns True

 if char is a vowel otherwise False.""" 

 l_case = (char == 'a' or char == 'e' or char == 'i' \

 or char == 'o' or char == 'u')

 u_case = (char == 'A' or char == 'E' or char == 'I' \

 or char == 'O' or char == 'U')

 return l_case or u_case

First Attempt with Conditionals
• Note: counter += 1 is

shorthand for

 counter = counter + 1

• Any downsides to this approach?

• What if I change word to
"Williamstown"?

word = 'Williams'

counter = 0

if is_vowel(word[0]):

 counter += 1

if is_vowel(word[1]):

 counter += 1

if is_vowel(word[2]):

 counter += 1

if is_vowel(word[3]):

 counter += 1

if is_vowel(word[4]):

 counter += 1

if is_vowel(word[5]):

 counter += 1

if is_vowel(word[6]):

 counter += 1

if is_vowel(word[7]):

 counter += 1

print(counter)

First Attempt with Conditionals
• Using conditionals as shown is

repetitive and does not generalize
to arbitrary length words

• We need something else that allows
us to “loop” over the characters in
an arbitrary input string

word = 'Williamstown'

counter = 0

if is_vowel(word[0]):

 counter += 1

if is_vowel(word[1]):

 counter += 1

if is_vowel(word[2]):

 counter += 1

if is_vowel(word[3]):

 counter += 1

if is_vowel(word[4]):

 counter += 1

if is_vowel(word[5]):

 counter += 1

if is_vowel(word[6]):

 counter += 1

if is_vowel(word[7]):

 counter += 1

print(counter)

For Loops

Iterating with for Loops
• One of the most common ways to traverse or manipulate a sequence

is to perform some action for each element in the sequence

• This is called looping or iterating over the elements of a sequence

• Syntax of a for loop: 

for var in seq:

 # body of loop

 (do something)

var is called the loop variable

seq is a sequence (for example, a string)

Iterating with for Loops
• As the loop executes, the loop variable (char in this example) takes

on the value of each of the elements of the sequence one by one

>>> # simple example of for loop

>>> word = "Williams"

>>> for char in word:

... print(char)

W

i

l

l

i

a

m

s

Note. Python for loops are meant specifically for iterating over  
sequences and are also called a "for each" loop.

Why might we call it that?

Counting Vowels
• Let us use a for loop to implement count_vowels() function

• What do we need to keep track of as we iterate over word?

def count_vowels(word):

 '''Takes word (str) as argument and returns

 the number of vowels in it (as int)'''

 pass

Counting Vowels
• Notice how count “accumulates” values in the loop

• We call count an accumulation variable

def count_vowels(word):

 '''Takes word (str) as argument and returns

 the number of vowels in it (as int)'''

 count = 0 # initialize counter

 # iterate over word one character at a time

 for char in word:

 if is_vowel(char):

 count += 1 # increment counter

 return count

count 0

'o''B' 's' 't' 'o' 'n'

count_vowels('Boston')

word 'Boston'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):

 '''Takes word (str) as argument and returns

 the number of vowels in it (as int)'''

 count = 0

 for char in word:

 if is_vowel(char):

 count += 1

 return count

count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):

 '''Takes word (str) as argument and returns

 the number of vowels in it (as int)'''

 count = 0

 for char in word:

 if is_vowel(char):

 count += 1

 return count

count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):

 '''Takes word (str) as argument and returns

 the number of vowels in it (as int)'''

 count = 0

 for char in word:

 if is_vowel(char):

 count += 1

 return count

count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):

 '''Takes word (str) as argument and returns

 the number of vowels in it (as int)'''

 count = 0

 for char in word:

 if is_vowel(char):

 count += 1

 return count

count 2

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):

 '''Takes word (str) as argument and returns

 the number of vowels in it (as int)'''

 count = 0

 for char in word:

 if is_vowel(char):

 count += 1

 return count

count 2

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

def count_vowels(word):

 '''Takes word (str) as argument and returns

 the number of vowels in it (as int)'''

 count = 0

 for char in word:

 if is_vowel(char):

 count += 1

 return count

Exercise:
Vowel Sequences

Exercise: Vowel Sequences
• Define a function vowel_seq(word) that takes a string word and

returns a string containing all the vowels in word in the order they appear

>>> vowel_seq("Chicago")

'iao'

>>> vowels_seq("protein")

'oei'

>>> vowel_seq("rhythm")

''

What might be other good values to test edge cases?

Exercise: Vowel Sequences
• Accumulation variables don’t have to be counters!
• Can accumulate strings as well: initialize to '' instead of zero

def vowel_seq(word):

 '''Takes word (str) as input and returns

 the vowel subsequence in given word (str)'''

 vowels = "" # initialize accumulation var

 for char in word:

 if is_vowel(char): # if vowel

 vowels += char # accumulate characters

 return vowels

Lists

A New Sequence: Lists
• A list is a comma separated, ordered sequence of values.

• These values can be heterogenous (strings, ints, floats, etc)

• Example: my_list = ['Hello', 42, 23.5, True]

• In CS, we use zero-indexing, so we say that 'Hello' is at  
index 0, 42 is at index 1, and so on

• We can access each element of a list using these indices

How Do Indices Work?
• Can access elements of a sequence (such as a list) using its index

• Indices in Python are both positive and negative

• Everything outside of these values will cause an IndexError.

['a', 'e', 'i', 'o', 'u']

0 1 2 3 4

-5 -4 -3 -2 -1

vowels = ['a', 'e', 'i', 'o', 'u']

Lists
• Lists are:

• Comma separated, ordered sequences of values

• Heterogenous collections of objects

• Mutable (or “changeable”) objects in Pythons. In contrast, strings are
immutable (they cannot be changed).

• We will discuss mutability in more detail soon!

Examples of various lists:

>>> wordList = ["What", "a", "beautiful", "day"]
>>> numList = [1, 5, 8, 9, 15, 27]
>>> charList = ['a', 'e', 'i', 'o', 'u']

>>> type(numList)
list

>>> mixedList = [3.14, 'e', 13, True]

Lists can be heterogeneous (mixed)!

How Do Indices Work?
• Can access elements of a sequence (such as a list) using its index

• Indices in Python are both positive and negative

• Everything outside of these values will cause an IndexError.

['a', 'e', 'i', 'o', 'u']

0 1 2 3 4

-5 -4 -3 -2 -1

vowels = ['a', 'e', 'i', 'o', 'u']

Accessing Elements of Sequences

>>> vowels = ['a', 'e', 'i', 'o', 'u']

>>> vowels[0] # character at 0th index?
'a'
>>> vowels[3] # character at 3rd index?
'o'
>>> vowels[4] # character at 4th index?
'u'
>>> vowels[5] # will this work?

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: list index out of range

Negative Indexing
• Negative indexing starts from -1, and provides a handy way to access

the last character of a non-empty sequence without knowing its length

Note: Most other languages do not support negative indexing!

>>> vowels = ['a', 'e', 'i', 'o', 'u']

>>> vowels[-1]
'u'

['a', 'e', 'i', 'o', 'u']

0 1 2 3 4

-5 -4 -3 -2 -1

Next time:  
Sequence Slicing & Operators

