CS|134 Lecture:

Sec

Uuences anc

| 00

DS

Announcements & Logistics

Homework 3 will be posted to GLOW, due next Monday @ |10 pm

Lab | graded feedback will be released today
Instructions on how to view feedback on course webpage

't may seem like an odd procedure, but we're using real-world
software development practices

Lab 2 due today 10pm / tomorrow |0pm
No class on Friday: Winter Carnival

Lab 3 (with a prelab) will be released on Friday

Do You Have Any Questions?

L ast [Ime

Looked at more complex decisions in Python
Used Boolean expressions with and, or, not
Chose between many different options in our code

1T elif else chained conditionals

Jloday's Plan

Introduce rteration using for loops to iterate over sequences
Introduce a new data type which Is also a sequence:

Lists

We will discuss sequences more on Monday

Seqguences In Python: Strings

Sequences In Python represent ordered collections of elements:
e.g,, strings, lists, ranges, etc.

Strings (type STr) are ordered sequences of individual characters
Example: word = "Hello"

"H" is the first character of word, 'e" is the second character,
and soO on

In CS, we use zero-indexing, so we say that 'H"' is at
index 0,'e" is at index |, and so on

Ve can access each character of a string using these indices

How Do Indices Work!?

Can access elements of a sequence (such as a list) using its index
Indices In Python are both positive and negative

Everything outside of these values will cause an IndexError.

O 1 2 3 4 5 6 7

"W 1 ll1ams"
8 7 6 -5 -4 3 2 -1

Note: [Most other languages do not support negative indexing!

Accessing Elements of Sequences

= O
—)
n

>>> word = "Williams" :
>>> word[@] # character at 0th index?

!
>>> word[3] # character at 3rd index?
N

>>> word|[7] # character at 7th index?
-

>>> word[8] # will this work?

o0

- e
AN~ N
N — W
IR N
W B W
)

Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>
IndexError: string index out of range

[

Sequence Length

he (seq) function returns the length of the sequence seq

Even though we zero-index, we still include the total number of
elements In the length

[E—

0
IW . 1
>>> word = "Williams" 8- 2 -l

>>> len(word) # total number of characters
8

6 7
m s

-

N~ N
N —~ W
I TN
W A W

>>> word[len(word)] # will this work?

Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>

IndexError: string index out of range

>>> word|[len(word)-1] # what about this?
ISI

teration Motivation: Counting Vowels

Problem: Write a function count_vowels (word) that takes a string
wo rrd as input and returns the number of vowels in the string (an int)

We'll create a function 1s_vowe L () to help us:

def count vowels(word):

'""TReturns number of vowels 1n the word'''

pass

>>> countVowels("Williamstown")

4
>>> countVowels("Ephelia")

4

s_vowel(char)

def is vowel(char):
"""Takes a char (str) returns True
1f char i1s a vowel otherwise False."""

L _case = (char == 'a' or char == 'e' or char == 'i'
or char == 'o' or char == 'u')

u_case = (char == 'A' or char == '"E' or char == 'I'
or char == '0' or char == 'U"')

return Ll _case or u_case

First Attempt with Conditionals

Note: counter += 1 s
shorthand for

counter = counter + 1

Any downsides to this approach!?

What if | change word to
"Williamstown'?

word = 'Williams'

counter = 0

if

if

if

if

if

if

if

if

is_vowel(word[0]):
counter += 1
is_vowel(word[1]):
counter += 1
is_vowel(word[2]):
counter += 1
is_vowel(word[3]):
counter += 1
is_vowel(word[4]):
counter += 1
is_vowel(word[5]):
counter += 1
is_vowel(word[6]):
counter += 1
is_vowel(word[7]):
counter += 1

print(counter)

First Attempt with Conditionals

. % . word = 'Williamstown'
Using conditionals as shown s counter = 0
repetitive and does not generalize if is_vowel(word[0]):

counter += 1
if is vowel(word[1]):

. counter += 1
We need something else that allows if is vowel(word[2]):

us to “loop” over the characters in counter += 1

an arbitrary input string if is_vowel(word[3]):
counter += 1

if is vowel(word[4]):
counter += 1

if is vowel(word[5]):
counter += 1

if is vowel(word[6]):
counter += 1

if is vowel(word[7]):
counter += 1

print(counter)

to arbitrary length words

~or Loops

terating with for Loops

+ One of the most common ways to traverse or manipulate a sequence

s to perform some action for each element in the sequence
- This is called looping or iterating over the elements of a sequence

* Syntax of a for loop:

~

for var 1in seq:«—— seqis a sequence (for example, a string)

var is called the loop variable

body of loop
(do something)

terating with for Loops

» As the loop executes, the loop variable (Char in this example) takes

on the value of each of the elements of the sequence one by one

>>> # simple example of for Lloop
>>> word = "Williams"

>>> for char in word:
. print(char)

Note. Python for loops are meant specifically for iterating over
sequences and are also called a "for each" loop.

n 3R ~—R =

Why might we call it that!

Counting Vowels

- Let us use a for loop to implement count_vowels () function

+ What do we need to keep track of as we iterate over word?

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

pass

Counting Vowels

* Notice how count “accumulates” values in the loop

« We call count an accumulation variable

def count vowels(word):
''"'Takes word (str) as argument and returns
the number of vowels in it (as int)'"''

count = 0 # initialize counter

1terate over word one character at a time
for char 1n word:
if is vowel(char):
count += 1 # increment counter
return count

Counting Vowels: Tracing the Loop

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

count = 0
for char in word:
if is _vowel(char):
count += 1 count_vowels('Boston')

return count

word | 'Boston'

count 0

Loop variable char B | 'o ' 't o

Counting Vowels: Tracing the Loop

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

count = 0
for char in word:
if is _vowel(char):
count += 1 countVowels('Boston')

return count

word | 'Boston'

count

Loop variable char B | 'o'|'s 't o

Counting Vowels: Tracing the Loop

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

count = 0
for char in word:
if is _vowel(char):
count += 1 countVowels('Boston')

return count

word | 'Boston'

count

Loop variable char B o' ' |t o

Counting Vowels: Tracing the Loop

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

count = 0
for char in word:
if is _vowel(char):
count += 1 countVowels('Boston')

return count

word | 'Boston'

count

Loop variable char B 'o S|t |'o

Counting Vowels: Tracing the Loop

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

count = 0
for char in word:
if is _vowel(char):
count += 1 countVowels('Boston')

return count

word | 'Boston'

count P

Loop variable char B o ' 1t | 'o

Counting Vowels: Tracing the Loop

def count vowels(word):
'''Takes word (str) as argument and returns
the number of vowels in it (as int)'''

count = 0
for char in word:
if is _vowel(char):
count += 1 countVowels('Boston')

return count

word | 'Boston'

count P

Loop variable char B 0o ' 't o

EXercise:
Vowel Sequences

Exercise: Vowel Sequences

» Define a function vowel_seq(word) that takes a string word and
returns a string containing all the vowels in word in the order they appear

>>> yowel _seq('"Chicago")

1a0

>>> vowels_seq("protein")

O€l

>>> vowel_seq('"rhythm")

What might be other good values to test edge cases!

Exercise: Vowel Sequences

- Accumulation variables don’t have to be counters!

- Can accumulate strings as well: initialize to " instead of zero

def vowel seq(word):
''"'Takes word (str) as input and returns
the vowel subsequence in given word (str)'''

vowels = """ # 1initialize accumulation var
for char 1in word:

if is_vowel(char): # if vowel

vowels += char # accumulate characters
return vowels

| Ists

A New Sequence: Lists

A list Is a comma separated, ordered sequence of values.
» These values can be heterogenous (strings, ints, floats, etc)
Example: my_list = ['Hello', 42, 23.5, Truel

In CS, we use zero-indexing, so we say that '"Hello' is at
index O, 42 is at index |, and so on

VWe can access each element of a list using these indices

How Do Indices Work!

Can access elements of a sequence (such as a list) using its index
Indices In Python are both positive and negative

Everything outside of these values will cause an IndexError.

L Ists

« Lists are:

- Comma separated, ordered sequences of values

- Heterogenous collections of objects

* Mutable (or “changeable™) objects in Pythons. In contrast, strings are
immutable (they cannot be changed).

* We will discuss mutability in more detall soon!

Examples of various lists:
>>> wordList = ["What", "a", "beautiful", "day"]
>>> numList = [1, 5, 8, 9, 15, 27]
>>> charList = ['a', 'e', 'i', 'o',
>>> mixedList = [3.14, 'e', 13, Truel
>>> type(numList)
list

u'l

Lists can be heterogeneous (mixed)!

How Do Indices Work!

Can access elements of a sequence (such as a list) using its index
Indices In Python are both positive and negative

Everything outside of these values will cause an IndexError.

Accessing Elements of Sequences

>>> VO\/\Ie-l_5= [Ial’ Iel’ Iil’ IOI’ Iul]
>>> yowels[@] # character at 0th index?
Ial

>>> yowels[3] # character at 3rd index?
IOI

>>> vowels[4] # character at 4th index?

>>> yowels[5] # will this work? o 1 2 3

Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>
IndexError: list index out of range

Negative Indexing

Negative indexing starts from -1, and provides a handy way to access
the last character of a non-empty sequence without knowing its length

>>> yowels = ['a',
>>> yowels[-1]

"u

Note: Most other languages do not support negative indexing!

Next time:
Sequence Slicing & Operators

