
Name: _______________________________________ Partner: ________________________________
Python Activity 65: Java – Object Oriented Programming Review

This activity helps us review all the Object Oriented Programming concepts that we've covered in this class, so far!

We can use an exploration of Java to better understand these concepts as they apply to Python.

Concept Model:

CM1. Match the Object-Oriented Programming principle on the left, with its corresponding explanation

on the right:

Abstraction

Inheritance

Encapsulation

Polymorphism

The bundling of data, along with the methods that operate on that

data, into a single unit.

The ability for one object/class to take on the states, behaviors,

and functionality of another (parent) object/class.

Using a single type entity (method, operator) to represent different

types in different scenarios (e.g., operator or method overloading).

Hide unnecessary details from the programmer/user.

What is an example of data abstraction in Python: ________________________________

Why might abstraction be useful?

What is an example of inheritance in Python: ________________________________

Why might inheritance be useful?

What is an example of encapsulation in Python: ________________________________

Why might encapsulation be useful?

Learning Objectives

Students will be able to:

Content:

• Define the OOP concepts of abstraction, inheritance, encapsulation, and polymorphism

• Connect the OOP concepts to Python code

• Describe the differences in syntax between Python & Java classes

Process:

• Write Java code equivalents of Python code using classes, attributes, and methods

Prior Knowledge

• Concepts: OOP, Python, Java return, Java methods, primitive types

What is an example of polymorphism in Python: ________________________________

Why might polymorphism be useful?

CM2. For the statements about methods & functions below, circle whether they apply to Python, Java, or

both:

a. Always defined within a class. Python&Java Methods Python functions

b. Stand-alone logical blocks of code that are defined outside of a class.

Python&Java Methods Python functions

c. Are called using dot notation on a specific instance of the containing class.

Python&Java Methods Python functions

d. Once defined, be called from anywhere in the program (by importing if in a separate module).

 Python&Java Methods Python functions

e. Its definition specifies parameters that must be passed explicitly, if they are passed at all.

Python&Java Methods Python functions

f. Can optionally manipulate parameters. Python&Java Methods Python functions

g. May perform an action (e.g., print or modify), and/or return a value (or implicitly return nothing).

Python&Java Methods Python functions

h. Can operate on the attributes/instance variables that are defined within the containing class.

 Python&Java Methods Python functions

CM3. Match the Java scope keyword on the left, with its corresponding explanation on the right:

private

protected

public

Methods/variables are not accessible from outside of the containing class.

Methods/variables can be freely used outside of the class.

Methods/variables should only be accessed by subclasses.

How do we indicate private scope variables/methods in Python? ___________________

Why might we want to scope something as private?

How do we indicate protected scope variables/methods in Python? _________________

Why might we want to scope something as protected?

How do we indicate public scope variables/methods in Python? ___________________

Why might we want to scope something as public?

Critical Thinking Questions:

CLASSES – METHODS

1. The table below contains an example of a Java class with two methods:

TestClass.java

a. Write the Python version of the code above:

b. Underline the method header in the Java code above, as well as in your Python version.

What class does this method belong to?

What is a method?

What is the difference between a function and a method (in Python)?

 __

c. Circle the object instance in the Java code above, as well as in your Python version.

What class is this an instance of?

What is an object instance?

 __

FYI: Java does not have classless functions like Python does!

public class TestClass {

 public String sayHi(String name) {

 return "Hello " + name;

 }

 public static void main (String args[]) {

 TestClass test = new TestClass();

 System.out.println(test.sayHi("CS134"));

 }

}

d. Place a star next to the method invocation/calling in the Java code above, as well as your

Python version.

How do we know the method is being called?

How does invoking/calling a method versus a function (in Python) differ?

 __

e. What are the parameters in this Java & Python code?

 __

There are two main ways that Java method parameters differ from Python method

parameters. What are they?

______________________________and_______________________________________

f. How does Python know what code to run when we run it as a script?

 __

How might Java know what code to run when we run it as a script?

 __

CLASSES – ATTRIBUTES

2. The table below contains a Java & Python implementation of our LinkedList class:

LinkedList.java, linkedlist.py

public class LinkedList {

 private String value;

 private LinkedList rest;

 public LinkedList(String val) {

 this.value = val;

 this.rest = null;

 }

 public LinkedList(String val,

 LinkedList other) {

 this.value = val;

 this.rest = other;

 }

 public String getValue() {

 return this.value;

 }

 public LinkedList getRest() {

 return this.rest;

 }

 public void setValue(String v) {

 this.value = v;

 }

}

class LinkedList:

 def __init__(self, value=None, rest=None):

 self._value = value

 self._rest = rest

 def get_value(self):

 return self._value

 def get_rest(self):

 return self._rest

 def set_value(self, val):

 self._value = val

a. Underline where we declare the class attributes in the Java code above, as well as in the

Python version.

Are these attributes private, protected, or public? How do you know?

c. In our Java code, we have two constructors, whereas in Python we can only have one of

an equivalent method. What might the comparable method be? Hint: Constructors

construct a new instance.

d. What are the getter methods in our Java & Python code?

Why do we call them getter or accessor methods?

 __

e. What are the setter methods in our Java & Python code?

Why do we call them setter or mutator methods?

 __

CLASSES – STRING REPRESENTATION

3. The table below continues our example from the previous question:

LinkedList.java(continued)

a. Fill in the in-line comments in the above code, explaining what the line(s) below it does.

b. What do the methods in this example code do?

c. How did we write code to create a LinkedList object in Python and then print a string

version of the object?

Write a line of code to create an instance of a LinkedList object in Java and then call a

method above to print the string version of the instance:

How might we call Python's version of the above method implicitly?

 private String toStringHelper(){

 // Comment:

 if (this.getRest() == null) {

 return this.getValue();

 } else { // Comment:

 return this.getValue() + ", " + this.getRest().toStringHelper();

 }

 }

 public String toString() {

 // Comment:

 return "[" + this.toStringHelper() + "]";

 }

Why are methods that convert instances to strings useful?

CLASSES – COMPARING OBJECTS

4. The table below continues our example from the previous question:

LinkedList.java(continued)

a. Write the Python version of the code above:

b. What does this method do?

c. Write example Python code to use this method:

Write example Java code to use this method:

How might we call Python's version of the above method implicitly?

In Python, when might we use the method we implemented in (a), and when might we

use the is operator? Why?

FYI: Java's toString() method is also called implicitly when the object instance is in a

System.out.println(..) statement.

FYI: In Java the .equals(..) method is comparable to Python's __eq__(..) method. And Java's == is

comparable to Python's is operator. In Java, we typically use .equals(..) to compare anything other

than primitive types.

def __eq__(self, other):

 # If both lists are empty

 if self._rest is None and other.get_rest() is None:

 return self._value == other.get_value()

 elif self._rest is not None and other.get_rest() is not None :

 return self._value == other.get_value() and self._rest ==

other.get_rest()

 # If we reach here, then one of the lists is empty and other is not

 else:

 return False

public boolean equals(LinkedList other) {

 if (this.getRest() == null && other.getRest() == null) {

 return true;

 } else if (this.getRest() != null && other.getRest() != null) {

 boolean val = this.getValue().equals(other.getValue());

 boolean r = this.getRest().equals(other.getRest());

 return val && r;

 } else {

 return false;

 }

}

In Java, when might we use the method in the example code, and when might we use the

== operator?

CLASSES – OTHER USEFUL METHODS

5. The table below continues our example from the previous question:

LinkedList.java(continued)

a. Write the Python version of the code above:

len() function calls __len__() method

slightly updated version accounts for empty list

def __len__(self):

 # base case: i'm an empty list

 if self._rest is None and self._value is None:

 return 0

 # i am the last item

 elif self._rest is None and self._value is not None:

 return 1

 else:

 # same as return 1 + self._rest.__len__()

 return 1 + len(self._rest)

in operator calls __contains__() method

def __contains__(self, val):

 if self._value == val:

 return True

 elif self._rest is None:

 return False

 else:

 # same as calling self.__contains__(val)

 return val in self._rest

public int length() {

 if (this.getRest() == null && this.getValue() == null) {

 return 0;

 } else if (this.getRest() == null) {

 return 1;

 } else {

 return 1 + this.getRest().length();

 }

}

public boolean contains(String search) {

 if (this.getValue().equals(search)){

 return true;

 } else if (this.getRest() == null) {

 return false;

 } else {

 return this.getRest().contains(search);

 }

}

b. What do these methods do?

c. Write example Python code to use this method:

Write example Java code to use this method:

How might we call Python's version of the above methods implicitly?

d. What are special methods in Python?

From what we've seen so far, does Java have special methods?

FYI: In Java there isn't an equivalent way to implicitly call the length(..) and contains(..) methods.

FYI: Java does not support operator overloading (i.e., redefining common operations like + or []), but it

does support method overloading (i.e., same method, different parameters).

