
Name: _______________________________________ Partner: ________________________________
Python Activity 52: Searching

Understanding algorithmic efficiency is critical to computer science.

Concept Model:

CM0. List examples of when you search: __

__

 What would happen if any of these search activities took twice as long as you expected?

__

CM1. The text and diagram below represent two approaches to finding the word "octopus" in a

physical, paper dictionary (not a Python dictionary!).

a. What might be the best case for the approach on the left? _______________________________

 What might be the worst case for the approach on the left? _________________________

b. Is the approach on the left how you typically find a word in a physical dictionary? ____________

 What is your typical approach?

__

__

 Is your approach more efficient than the one described on the left? ____________

 What might be the best case for your approach? _______________________________

 What might be the worst case for your approach? _________________________

c. Which of these approaches would work better for finding a word in an unsorted order? Why?

__

Learning Objectives

Students will be able to:

Content:

• Identify best case and worst case scenarios for searching algorithms

• Predict how changes in a searching algorithm impacts efficiency

• Define constant, linear, logarithmic, and quadratic run-times

• Explain how Big-O notation measures efficiency

• Describe the linear and binary searching algorithms for sorted vs. unsorted data

Process:

• Write code that implements binary search recursively

Prior Knowledge

• Python concepts: computational thinking, recursion, lists, LinkedList

Finding a Word in a Dictionary – Two Ways

For each page in our dictionary book:

 Check to see if our word is on that page

 If it is, then we've found the word!

 If it isn't, then turn the page.

CM2. We can explain the difference in efficiency in the above two algorithms with mathematical

understanding. Let's consider another task: creating a grid on a piece of paper:

a. Complete the following table (don't overthink this one!):

Number of boxes we

want on the paper

Number of steps (number

of boxes we draw)

1

2

4

8

16 16

b. What is the mathematical relationship between the number of boxes we want and the number of

operations if we draw each box’s 4 sides (circle one):

 constant linear logarithmic quadratic

c. Is drawing each individual box (or each corner of each individual box) the only way to create a

grid on a piece of paper? Is it the most operation-efficient way?

__

d. Complete the following table, where we do a different approach to creating a grid on a paper.

Highly recommend actually folding a piece of paper!!!!

Number of boxes we

want on the paper

Number of steps (number

of times we fold the paper)

1

2

4

8

16

e. What is the mathematical relationship between the number of boxes we want and the number of

steps if we fold the paper (circle one):

 constant linear logarithmic quadratic

FYI: A best case scenario is when the minimum number of operations is required (i.e., when an

approach will take the fewest number of steps). A worst case scenario is when the maximum

number of operations is required (i.e., most number of operations over all possible inputs). An

average case scenario is when the average/typical number of operations is required.

FYI: Constant run-time occurs when an operation does not depend on the number of elements.

Linear run-time is when an operation requires time proportional to the number of elements.

FYI: Logarithmic run-time occurs when an operation has a inverse-exponential relation to the number of elements.

Quadratic run-time is when an operation requires time proportional to the number of elements squared.

f. What might be the run-time for the first dictionary searching algorithm in CM1?

__

What might be the run-time for your dictionary searching algorithm in CM1?

__

CM3. Let's think about the relationship between operations' number of elements and run-time:

a. Label the following graph with the run-times they represent:

b. Provide an example algorithm or operation with the following run-times:

 constant: __

 linear: __

 logarithmic: __

 quadratic: __

(what would result in a quadratic runtime?)

c. Match the run-time on the left with its Big-O notation on the right:

Constant

Linear

Logarithmic

Quadratic

Exponential

Factorial

O(1)

O(n2)

O(2n)

O(log n)

O(n!)

O(n)

 d. Why might computer scientists use Big-O notation to

describe the run-time efficiency of algorithms/operations,

rather than simply timing the operation on a computer?

FYI: When computer scientists discuss run-times of algorithms or operations, we use something known as Big-O

Notation which represents the run-time mathematical operations we've been discussing in this activity. Big-O

notation drops less important details (such as the addition of constants), to focus mostly on the operation's

order of magnitude based upon the number of elements (n).

Run-times:

Constant

Linear

Logarithmic

Quadratic

Critical Thinking Questions:

1. Examine the following partially complete code for searching for an item in a list:

a. Complete the code above where the comments scaffold a linear search of a list.

b. Which searching algorithm is this most similar to from CM1? __________________

c. What is the best case scenario for this algorithm? ________________________________

What is the Big-O notation run-time of this algorithm in the best case? O(______)
d. What is the worst case scenario for this algorithm? ______________________________

What is the Big-O notation run-time of this algorithm in the worst case? O(______)

2. Examine the following partially complete code for searching for an item in a sorted list:

linear.py
def linear_search(my_lst, item):

 # (i) for each item in our list

 # (ii) check to see if it's our item and…?

 # (iii) otherwise…

binary.py
def binary_search(a_lst, item):

 """ Assume a_lst is sorted. If item is in a_lst, return True;

 else return False. """

 n = len(a_lst)

 mid = n // 2

 # Comment:

 if n == 0:

 return False

 # Comment:

 elif item == a_lst[mid]:

 return True

 # Comment:

 elif item < a_lst[mid]:

 return binary_search(a_lst[:mid], item)

 # Comment:

 else:

 # (iv). What should be done here?

FYI: Sequence splicing is an O(n) operation, which means this implementation of Binary Search is not as efficient

as it could be! A faster Binary Search takes the index_start and index_end as arguments so that

splicing isn’t needed.

def binary_search_better(a_lst, item, index_start, index_end):

 n = index_end - index_start

 mid = (n // 2) + index_start

 if n <= 0: return False

 elif item == a_lst[mid]: return True

 elif item < a_lst[mid]: return binary_search_better(a_lst, item, 0, mid)

 else: # (iv). What should be done here?

a. Step through the code, and explain what the following sections do:
def binary_search(a_lst, item):

 n = len(a_lst)

 mid = n // 2

 if n == 0:

 return False

 elif item == a_lst[mid]:

 return True

 elif item < a_lst[mid]:

 return binary_search(a_lst[:mid], item)

 else:

 # (iv). What should be done here?

b. Which searching algorithm is this most similar to from CM1? __________________

c. Write one line of code to complete the (iv) comment section:

 __

__

d. What is the best case scenario for this algorithm? ________________________________

What is the Big-O notation run-time of this algorithm in the best case? O(______)
e. What is the worst case scenario for this algorithm? ______________________________

What is the Big-O notation run-time of this algorithm in the worst case? O(______)
f. Will this code work on an unsorted list? Why or why not?

__

Application Questions.

1. Recall our LinkedList class and its underlying structure, as in the diagram below for the list,

linklst = [3, 7, 1715] and compare it to the array diagram below:

Linked List Diagram

Array Diagram

a. For the following operations, which data structure is better? Consider the run-time &

space trade off, and circle one!

 When you know how big the list will be LinkedList or Array

 When you don't know how big the list will be LinkedList or Array

Inserts at the beginning of the list LinkedList or Array

 Inserts at the end of the list LinkedList or Array

 Accessing an item by index LinkedList or Array

b. Which data structure is better? Why?

__

FYI: LinkedLists are a "pointer-based" data structure, and can grow & shrink on the fly, meaning we don't need to

know how big they'll be when we create them. Arrays are a contiguous memory data structure, where all their

data is stored contiguously in memory, so we need to know how much space to allocate for the array when we

create it. These two data structures illustrate the time-space trade off.

3 7 1715

