Name: Partner:

Python Activity 44: Linked Lists - Methods
Digging deeper into the implementation of our own [recursive] list data structure.

Learning Objectives

Students will be able to:

Content:

e Compare & contrast special methods and dot-notation methods

e Explain how different modifications to a recursive list impacts efficiency
Process:

e Write code that modifies a recursive list class in multiple ways

Prior Knowledge

e Python concepts: Linked Lists, Recursion, User-defined types, Special methods

Concept Model:
CMI1. We’ve been building out the special methods for our recursive LinkedList class, but not all
important list methods are special methods!

a. What are some methods we use with Python 11 sts that we call using dot notation?

b. What is the difference between the methods from (a) and the special methods we've

implemented previously?

Critical Thinking Questions:
1. We want to write a recursive append (self, val) method for our LinkedList class that
will append the value, val, to the end of our LinkedList:

a. For this recursive method, what is the base case / stopping condition?

b. For this recursive method, how is the longer journey broken down/shortened?

c. What is the small step we must take in each recursive call?

d. How might we actually append val to the end of our list?

e. Below is the completed implementation of the append method. Place a star next to the

base case. Circle the recursive call. Underline where we actually append val. Does any
of the code here surprise you?

def append(self, val):
if self. rest is None:
self. rest = LinkedList (val)
else:
self. rest.append(val)

2. We want to write a prepend (self, val) method for our LinkedList class that will place
the value, val, at the beginning of our LinkedList. Below is a diagram of a sample
LinkedList and a val, "founded", to prepend to our list:

Linked List Diagram

_value

_value _value

"founded” |[E]
_rest _rest None

a. Modify the diagram above to add the string " founded" to the beginning of the list.
What is the new value of the 0™ element of our list?
What is the new rest of the 0™ element of our list?

O=w= b Do we need recursion to implement this method? Why/not?
c. Describe your approach for implementing the prepend method:
d. Below is the completed implementation of the prepend method. Does any of the code

here surprise you? Why/not?

def prepend(self, wval):

old val = self. value
old rest = self. rest
self. value = val

self. rest = LinkedList (old val, old rest)

We want to write an insert (self, wval, index) method for our LinkedList class that
will place the value, val, at the index, index, of our LinkedList:

a. For this recursive method, what is the base case / stopping condition?

b. For this recursive method, how is the longer journey broken down/shortened?

c. What is the small step we must take in each recursive call?

d. Below is the partially completed implementation of the i nsert method. Fill in the lines

below the (i), (ii),and (iii)comments with Python code.

def insert(self, wval, index):

(i) 1if index is 0, we add to beginning
if

(ii) we've reached end of list, so append to end
elif

(11i1) else recurse until index reaches 0
else:

Application Questions: Use the Python Interpreter to check your work

1.

Write the extend (self, other 1st) method for our LinkedList class so that we can
add a LinkedList to the end of the calling instance. When considering the recursion,
determine (1) what is the stopping condition, (2) what is the small step we should take with each
recursive call, and (3) how do we break the journey down into a smaller journey::

def extend(self, other 1st):

2. Write a recursive method of LinkedLi st that returns a copy of the calling instance.
def copy(self):

3. Write a recursive LinkedLi st method that changes the values of the calling instance to None.
def clear (self):

