Name: Partner:

Python Activity 43: Linked Lists - Special Methods
Let’s build more of our own data types, using a recursive class!

Learning Objectives

Students will be able to:

Content:

e Define a linked list

o Identify the value and rest of a linked list

Process.:

e  Write code that modifies a recursive list class

e  Write code that iterates over a recursive list’s values.

Prior Knowledge

e Python concepts: Recursion, User-defined types, Special methods

Concept Model:
We’ve encountered Python lists before, but now we’re going to implement our own lists using a well-
known data structure design called Linked Lists.

CMI1. This illustration represents the underlying class structure for the list, Il = [3, 7, 1715].
Linked List lllustration a. How many elements are in II?

How many nesting dolls are shown on the left?

b. What is the value of the 0™ element of 1I?
7 What is the value of the 0™ nesting doll?
c. How do we know which nesting doll comes

I7I 5 after the 0"-index doll?

d. What might the 3th-index doll contain?

e. Draw a 3th-index doll to the above illustration, with the value None.



CM2. The diagram below represents the underlying class structure for the list, Il = [3, 7, 1715]:
Linked List Diagram

_value

_value

_value

res _rest
a. What are the two attributes of the LinkedList class?
b. What is stored in the value attribute of the Oth LinkedList of this list?
c. What is stored in the rest attribute of the Oth LinkedList of this list?
d. Draw on the diagram with what you think is stored in the rest attribute of the /ast
LinkedList of this list.
Ow - What does the rest attribute represent?

FYI: Any instance of a class that is created by using another instance of the class is a recursive class.

Critical Thinking Questions:

1. The following code creates a LinkedList version of our list:

1 = LinkedList(3, LinkedList(7, LinkedList(1715)))

O-w a. What does the first parameter of a new LinkedList instance represent?

O=w b. What does the second parameter of a new LinkedList instance represent?

c. How might we write a line of code to make a new list, [12, which is the same as 11 but has
the string "today" as the value of the first element?




2. Examine the following example __init__ method from the LinkedList class:

class LinkedList:

def init (self, wvalue=None, rest=None):
self. value = value

self. rest = rest
Or . What #ype of object might value be?
O=w b What type of object must rest be?
c. Write a line of code for the body of the get value (self) method:
3. Examine the following example method from the LinkedList class:

def mystery(self):
if self. rest is None:
return str(self. value)

else:
return str(self. value) + ", " + self. rest.mystery()
a. What does the following line do?: 1f self. rest is None:
b. How do we know this method is recursive?
Ow For this recursive method, what is the base case / stopping condition?
Ow Jd For this recursive method, how is the longer journey broken down/shortened?
Owx What is the small step we take in mystery for each recursive call?

f. For our example list, I11, what will this mystery method return?




g. What should the mystery method be renamed to?

h. Rewrite the /ast line of our example code to implicitly call this renamed method:

We want to write a recursive __1en__ method for our LinkedList class that will have the
following behavior:

>>> ||1 = LinkedList(3, LinkedList(7, LinkedList(1715)))
>>>11.__len_ ()

3

a. How might we call __len__ implicitly on a LinkedList object?

b. For this recursive method, what is the base case / stopping condition?
(Hint: There might be more than 1))

c. For this recursive method, how is the longer journey broken down/shortened?

d. What is the small step we must take in each recursive call?

e. Below is the implementation of the __1en__ method. Place a star next to the base cases.
Circle where we make the journey smaller. Underline where we take our repeated small
step.

def _len_ (self):
if self. rest is None and self. value is None:
return O
elif self. rest is None and self. value is not None:
return 1
else:

return 1 + len(self. rest)

FYI: Itis preferred to use is or is not operators (as opposted to == or !=) when comparing a user-
defined objects to a None value.




f. Why might we need two base cases for this method?

O 5. Match up special methods on the left-hand column with the code that implicitly calls them in the
right-hand column (make educated guesses using special method names and parameters!):
Special Method Called By
a. len (selfJ™ 1Lst = LinkedList ()
b. 1Init (self) Term (1lLst)
c. str (self) 1Lst[1]
d. contains (self, item) lLst == 1lLst2
e. add (self, other) 1Lst [0] = "founded"
f. getitem (self, item) 1Lst + 1lLst2
g. setitem (self, item, val) 1715 in 1Lst
h. eq (self, other) str (1Lst)
(There's many more special methods, we've seen others before!)
Confirm your responses by checking the python3 documentation:
https://docs.python.org/3/reference/datamodel.html#special-method-names
6. Examine the following example code:
def contains_ (self, wval):
if self. value == val:
return True
elif self. rest is None:
return False
else:
return val in self. rest
Ow . For this recursive method, what is the base case / stopping condition?
Ow o For this recursive method, how is the longer journey broken down/shortened?
Or What is the small step we take in __contains__ for each recursive call?



https://docs.python.org/3/reference/datamodel.html#special-method-names

d. Circle the recursive call in this method.

7. We want to write a __getitem__ (self, index) method for our LinkedList class that
will returns the value at the index, index, of our LinkedList:

a. For this recursive method, what is the base case / stopping condition?
b. For this recursive method, how is the longer journey broken down/shortened?
c. What is the small step we must take in each recursive call?
Ow Jd Below is the partially completed implementation of the insert method. Fill in the lines

below the (i), and (ii)comments with Python code.

def getitem (self, index):
# (1) 1f index 1s 0, we found the item
if

# (i11i) else recurse until index reaches 0
else:

Application Questions: Use the Python Interpreter to check your work

1. Write a recursive LinkedLi st method that changes the value located at index, ind, to val.

def  setitem (self, ind, val):




2. Writethe add (self, other) method for our LinkedList class so that we can
concatenate two LinkedLists together. When considering the recursion, determine (1) what is
the stopping condition, (2) what is the small step we should take with each recursive call, and (3)

how do we break the journey down into a smaller journey::
def add (self):

3. Writethe eqg (self, other) method for our LinkedList class so that we compare

whether two lists are equivalent:

def eq (self, other):




