

Name: _______________________________________ Partner: ________________________________
Python Activity 37: Classes - Special Methods

Some common actions are simplified through implementing special methods.

Critical Thinking Questions:

1. Examine the following code below, which we've seen in previous activities.

book.py
0 class Book:

1 """ This class represents a book """

2 def __init__ (self, book_title, book_author, book_year):

3 self._title = book_title

4 self._author = book_author

5 self._year = book_year

8 if __name__ == "__main__":

9 lotr = Book("Fellowship of the Ring", "Tolkein", 1954)

10 print(lotr)

a. What do you think will be displayed by line 10?

__

b. This code actually prints "<__main__Book object at 0x105eecca0".

How does this differ from what you predicted in part (a)?

__

c. Write a method for the Book class that will return a more meaningful string

representation of Book objects:

__

__

__

Learning Objectives

Students will be able to:

Content:

• Define special methods in Python

• Identify which special method is being called implicitly

• Explain how to call a special method implicitly

Process:

• Write code that calls special methods implicitly

• Write code to implement special methods for user-defined types

Prior Knowledge

• Python concepts: user-defined classes, attributes, methods, __init__

2. Examine the following code below, that extends our previous code:

book.py

0 class Book:

1 """ This class represents a book """

2 def __init__ (self, book_title, book_author, book_year):

3 self._title = book_title

4 self._author = book_author

5 self._year = book_year

6 def __str__(self):

7 return "'" + self._title + "', by " + self._author +

 ", in " + str(self._year)

8 if __name__ == "__main__":

9 lotr = Book("Fellowship of the Ring", "Tolkein", 1954)

10 print(lotr)

a. Place a star next to the code that is new in this example.

b. How does the code on line 7 differ from the code you wrote in 1c?

c. After running this code, line 10 will print the following, why might that be?

'Fellowship of the Ring', by Tolkein, in 1954.

c. What method might the print(..) built-in function call implicitly?

d. What other Python built-in function that we've used before might also call this

method implicitly? ______________ (Hint: What function has a similar name?)

e. What other Python method have we seen that starts & ends with double-underscore

(__xxxx__)? __

FYI: In Python, methods that begin and end with a double underscore (such as __str__) have special

behaviors built-in to Python. They are called special methods.

3. Match up special methods on the left-hand column with the code that implicitly calls them in the

right-hand column (make educated guesses using special method names and parameters!):

Special Method Called By

a. __len__(self)

b. __init__(self)

c. __str__(self)

d. __contains__(self, item)

e. __eq__(self, other)

f. __lt__(self, other)

g. __gt__(self, other)

h. __add__(self, other)

i. __sub__(self, other)

j. __mul__(self, other)

k. __truediv__(self, other)

l. __pow__(self, other)

m. __and__(self, other)

b = Book()

len(m)

b**2

b * 2

b < 5

b > 5

b + 2

b == 5

b and True

22 in b

str(b)

b / 5

b - 2

(There's many more special methods, we'll see some of these again later!)

Confirm your responses by checking the python3 documentation:

https://docs.python.org/3/reference/datamodel.html#special-method-names

Application Questions: Use Python to check your work

1. Implement additional special methods for our class, Book:

a. Our Book class will include an attribute, _words, which is a list of strings

representing all the words in the Book instance. As an example:_words for the

lotr object looks something like: ["When", "Mr.", "Bilbo",
"Baggins", "of", "Bag", "End", "announced",

...,"down", "into", "the", "Land", "of", "Shadow."]

Create a new special method which returns the number of words in the entirety of the

book. As an example, len(lotr) should return 187790.

https://docs.python.org/3/reference/datamodel.html#special-method-names

b. Add a special method for Book that, when given a string, word, returns True if that word is in

_words, False otherwise:

c. Add a special method for Book, that takes another Book object as a parameter and returns True

if the two books are the same (defined as having the same title and author), False otherwise:

d. Create two different instances of Book objects:

e. Write some lines of code that use the special methods you wrote on the Book instance objects:

2. Create a new class, Name, which represents someone's name. When designing this class,

consider: what should be the attributes? How should we initialize these values? What should the

string representation look like? If we wanted to make an initials() method which returns

just the initials of the name, how might we do that? What about a method official(), that

returns the first and middle initial, and the full name?

