

Name: _______________________________________ Partner: ________________________________
Python Activity 36: Classes – Accessors & Mutators

Digging deeper into the useful aspects of user-defined types with attributes and methods.

Concept Model:

Recall the potential Class Object Model (below) for the Book class from the example

"Iris reads J.R.R. Tolkein's The Fellowship of the Ring, originally published in 1954.":

CM1. What are the attribute values for

this example?

Critical Thinking Questions:

1. Examine the following code below.

book.py
class Book:

 def __init__(self, book_author, book_title, book_year):

 self._author = book_author

 self._title = book_title

 self._year = book_year

a. What is new about the Book class’s attribute variables that we haven’t seen

before?

__

Learning Objectives

Students will be able to:

Content:

• Describe what a variable name with leading underscore implies

• Explain the difference between public, protected, and private access

• List differences between accessor and mutator methods

Process:

• Write code that creates a new user-defined class with initializer method

• Write code that creates a new user-defined class with accessor & mutator methods

Prior Knowledge

• Python concepts: user-defined classes, methods, attributes, class object model, self

FYI: In Python there is an attribute naming convention that indicates that variable names that start with

a single leading underscore (_) should not be accessed from outside the class in which they're

defined. We call these protected variables. In Python, these are conventions, not rules, but we will

class Book

 Attributes:

 author, title, year, …

 Methods:
 read_word, open, close, …

b. For each of the potential attribute names below, circle if they are public,

protected, or private:

Attribute Name: Circle one:

copyright public protected private

_address public protected private

__edition public protected private

c. For each OOP situation on the left, circle one of the access-terms on the right:

OOP Attribute Situation Circle one

If the attribute should only be accessed (modified, used, etc.)

from within the class itself and its subclasses.

public protected private

If the attribute can only be accessed (modified, used, etc.)

from within the class itself.

public protected private

If the attribute can and should also be accessed (modified,

used, etc.) from outside the class, as well as within.

public protected private

d. Why might most attributes in our CS134 class start with a single underscore?

__

2. Examine the following code below, that extends our previous code:

book.py
class Book:

 """This class represents a book """

 def __init__(self, book_title, book_author, book_year):

 self._title = book_title

 self._author = book_author

 self._year = book_year

 def get_title(self):

 return self._title

if __name__ == "__main__":

 lotr = Book("Fellowship of the Ring", "Tolkein", 1954)

 print(lotr.get_title())

a. Place a star next to the code that is new in this example.

b. The last line, prints Fellowship of the Ring. Why might that be?

c. Write two lines of code to add an additional accessor method to our Book class, to

get the value of the Book instance's year of publication:

follow them. Private variables are indicated with a leading double underscore, and can only be

accessed within the class, python enforces this.

FYI: Accessor methods retrieve the values of private and protected attributes from outside of the class definition.

d. Write a line of code that uses this new accessor method of our Book class from (c):

3. Examine the following code below, that extends our previous code:

book.py
class Book:

 """ This class represents a book """

 def __init__(self, book_title, book_author, book_year):

 self._title = book_title

 self._author = book_author

 self._year = book_year

 def get_title(self):

 return self._title

 def set_title(self, book_title):

 self._title = book_title

if __name__ == "__main__":

 lotr = Book("Fellowship of the Ring", "Tolkein", 1954)

 lotr.set_title("Book One")

 print(lotr.get_title())

a. Place a star next to the code that is new in this example.

b. When we call lotr.set_title(..) just before the last line of code, what might

be happening to the lotr instance's attribute values?

c. What might be printed by lotr.get_title()on the last line? _______________

d. Write two lines of code to add an additional mutator method to our Book class, to set

the value of the Book instance's year of publication:

e. Write a line of code to use this mutator method of our Book class from (d):

FYI: Mutator methods set or change the values of the attributes, when outside of the class

implementation.

4. Examine the following code below, that extends our previous code:

book.py
0 class Book:

1 """ This class represents a book """

2 def __init__(self, book_title, book_author, book_year):

3 self._title = book_title

4 self._author = book_author

5 self._year = book_year

6 def get_author(self):

7 return self._author

8 def same_author_as(self, other_book):

9 return other_book.get_author() == self._author

10 if __name__ == "__main__":

11 lotr = Book("Fellowship of the Ring", "Tolkein", 1954)

12 pp = Book("Pride & Prejudice", "Austen", 1813)

13 emma = Book("Emma", "Austen", 1815)

14 print(lotr.same_author_as(pp))

15 print(emma.same_author_as(pp))

a. Place a star next to the code concepts that are new to us in this example.

b. What would be the output of the following commands:

lotr.get_author() _____________________________________

pp.get_author() _____________________________________

emma.get_author() _____________________________________

c. What arguments does the same_author_as(..) method require?

 ________________________________ and ________________________________

d. When lotr.same_author_as(pp) is called on line 14, how do the parameter

values from the function call match to the arguments of the function definition?

The self argument is replaced with the _________________ object.

The other_book argument is replaced with the ___________ parameter value.

e. According to your response in (d) what is returned by the following values when line

14 is executed? self._author ______________________________

other_book.get_author() ________________________

f. What might be printed by the call to lotr.same_author_as(pp)? _________

g. What might be printed by the call to emma.same_author_as(pp)? _________

h. Create a new method, num_words_in_title(), which returns the number of

words in the title of the book:

__

 __

__

Application Questions: Use Python to check your work

1. Continue implementing our class, Book:

a. Add a method for Book, years_since_pub(current_year), that takes in the

current year and returns the number of years since the book was published (Hint: Don't

forget self!):

b. Create two different instances of Book objects:

c. Write some lines of code that use the methods you wrote on the Book instance objects:

