
Name: _______________________________________  Partner: ________________________________ 
Python Activity 28: Dictionaries of Dictionaries 

We can use dictionaries to represent all sorts of structures of data. 

 
Critical Thinking Questions: 

 

1.  Examine the sample code below, declaring several dictionaries, which maps ice cream flavors as 

keys to the number of cones sold. Each dictionary represents a different year of sales.  

lickety.py 

 

a. Given the code in its current state, write a single line of code to display the expected output if the 

user entered 2020 on line 25: _____________________________________________________ 

b. Would your proposed approach work if we wanted to allow the user to input any year?  

Summarize what we would need to do to support user input of any year: 

_______________________________________________________________________ 

_______________________________________________________________________ 

_______________________________________________________________________ 

c. We could imagine a solution like the one outlined in the code below: 

 

 

 

 

 

 

What is the type of the keys in year_table? ______________ 

What is the type of the values in year_table? ______________ 

Write a line of code to display the expected output if the user entered 2020 on line 50  

(Hint: remember what the keys' type is!): 

 

Learning Objectives 

Students will be able to: 

Content: 

• Define a nested dictionary  or dictionary of dictionaries 

Process: 

• Write code to construct and add elements to dictionaries of dictionaries 

• Write code to access elements of dictionaries of dictionaries 

• Write code to iterate over dictionaries of dictionaries 

Prior Knowledge 

• Python concepts: dictionaries, data types, \n 

 

0  yr2022 = {'Purple Cow':1027,'Sweet Cream':1509,'Mudpie':2231} 

1  yr2021 = {'Purple Cow':992, 'Sweet Cream':1623,'Mudpie':2064} 

2  yr2020 = {'Purple Cow':891, 'Sweet Cream':955, 'Mudpie':520} 

   #yr2019 = ... 

   # Imagine we had 20 (or more!) years' worth of data 

25 year = input("Year of ice cream sales? ") 

26 year_table = [{}] * 2023 # Adds 2023 empty dictionaries to this list 

27 year_table[2022] = yr2022 

28 year_table[2021] = yr2021 

29 year_table[2020] = yr2020 

   # Imagine this continued for 20 more years' of data 

50 year = input("Year of ice cream sales? ") 



_______________________________________________________________________ 

d. How many lines of code (approximately) does this solution require? ~ ________lines of code 

e. Is this a good/efficient/convenient solution? Why or why not? 

_______________________________________________________________________ 

f. Instead of a list of dictionaries, what might be a different data structure that allows us to access the 

data by year more efficiently? 

a int | str | bool | function | tuple | set | dictionary (circle one) of dictionaries. 

2.  Examine the sample incomplete code below, which should be a better solution than the one 

proposed in Question 1c.  

lickety.py 

 

a. Given the call to year_table[year] on line 31 and how we intend to iterate over all the data 

in year_table on line 33, what type of data structure might year_table be?  ____________ 

b. Complete the line of code on line 20, creating a new, empty object for year_table: 

20 year_table = _________________________________________________________ 

c. Write a few lines of code, representing how you would add the first three dictionaries to 

year_table on lines 21-30: 

_______________________________________________________________________ 

_______________________________________________________________________ 

_______________________________________________________________________ 

d. Examine the code on lines 32-34. When a user inputs "Sweet Cream" the output should be 

something similar to: '2022: 1509 \n 2021: 1623 \n 2020: 955'. Write a line of 

code, for line 34, to do this: 

_______________________________________________________________________ 

e. It is possible that a particular ice cream flavor might have only received sales in some years. In 

that case, the number 0 should be stored in the dictionary and then displayed when printing on 

line 34. Rewrite the code around line 34 to handle this situation: 
for icecream_year in year_table: 

_______________________________________________________________________ 

0  yr2022 = {'Purple Cow':1027,'Sweet Cream':1509,'Mudpie':2231} 

1  yr2021 = {'Purple Cow':992, 'Sweet Cream':1623,'Mudpie':2064} 

2  yr2020 = {'Purple Cow':891, 'Sweet Cream':955, 'Mudpie':520} 

   #yr2019 = ... 

   # Imagine we had 20 (or more!) years' worth of data 

 

20 year_table = # (i) What type of data structure? 

21 # (ii) How to add our dictionaries to year_table? 

 

 

 

30 year = input("Year of ice cream sales? ") 

31 print(year_table[int(year)]) 

 

32 flavor = input("Flavor of interest? ") 

33 for icecream_year in year_table: 

34  print( # (iii) Year: Number Sold   ) 

 



_______________________________________________________________________ 

_______________________________________________________________________ 

_______________________________________________________________________ 

_______________________________________________________________________ 

_______________________________________________________________________ 

Application Questions: Use the Python Interpreter to check your work 
 

1. We don't typically  begin with 20+ dictionaries hard-coded in a Python script! It's much more realistic 

to read-in the data from a file, and accumulate the data into a nested data structure (much like we've 

previously done with lists of lists). This allows us to write fewer lines of code.  

 

Given the sample data file below, read-in the data into a data structure that allows us to access the data 

as specified by the sample code in Question 2. 

lickety.csv (could have 60+ lines!) 

2. a. We want to hire an effective offensive player (i.e., someone who scores a lot) for our new football 

(soccer) team. We're pursuing this goal with a data-driven approach, and have a comma-separated 

values files containing data on the top goal-scorers for the past several years. The first several lines of 

the file are shown below, and each row has the season (year), player's name, number of goals, number 

of passes, and number of fouls. Write a function, read_goal_data(filename), that takes a string 

filename and returns a dictionary of dictionaries, mapping the year to each season of data (just the 

names and their number of goals).  

 

 

 

 

 

 

 

 

 

 

b. Write a function, get_top_scorers(season_table), that takes a dictionary of 

dictionaries as an argument and returns a list of player names that appear for all seasons of our 

data. 

all_seasons.csv (first 9 lines) 

2022,Purple Cow,1027 

2022,Sweet Cream,1509 

2022,Mudpie,2231 

2021,Purple Cow,992 

2021,Sweet Cream,1623 

2021,Mudpie,2064 

2020,Purple Cow,891 

2020,Sweet Cream,955 

2020,Mudpie,520 

 

2018,Pierre-Emerick Aubameyang,22,692,13 

2018,Sadio Mané,22,1,34 

2018,Mohamed Salah,22,1,25 

2018,Sergio Agüero,21,771,21 

2018,Jamie Vardy,18,416,19 

2018,Eden Hazard,16,1,12 

2018,Callum Wilson,14,440,41 

2018,Raúl Jiménez,13,1,42 

2018,Alexandre Lacazette,13,771,51 


