Name:

Note: This is a new, untested POGIL. Let Iris know if there are issues!

Partner:

Python Activity 15: Functions as Types

In Python, everything has a type, which has some useful implications for functions!

Learning Objectives
Students will be able to:
Content:

e Predict the output of code using functions as objects

Process:

e Write code that treats functions as objects

e Write code that passes functions as parameters

Prior Knowledge

e Python concepts: functions, lists, type(), expressions, assignment

Critical Thinking Questions:
1. Examine the sample interactive python session below.

25

Interactive Python

>>> some func (5)

a. What type of object is square (..)?

0 >>> def square(x):

L. return x*x How do you know?

2 >>> type (square)

3 <class 'function'> ——

4 >>> some func = square b. What #ype of object is some func?
5

6

How do you know?

How is the command type ('square ') different from what we see on line 2? How

would the returned value differ?

What might be returned if we entered the command, some func (4)?

Would the return value be different if we called, square (4) ?

O+ Howdo you know?

I FYI: Everything in Python is an object, which means everything has a type, including functions!

Examine the sample interactive python session below.

0 >>> def square (num) :

. return num*num

2 >>> def cube (num) :

return num*num*num

1

3

Interactive Python

>>> funcs = [square, cube]
>>> for operation in funcs:
.. print (operation(4))
16
64

QO ~J oy U >

a. What type of objects are square and cube?

What type of object is variable funcs? of

What type of object is loop variable operation?

What parameter was passed to operation?

b. How does the output on lines 7 and 8 relate to the parameter value passed to
operation?
Ow Where are the functions square and cube being called?

Application Questions: Use the Python Interpreter to check your work

1. Write a function, perform computations, that takes as arguments a number and a list of
functions, returning a list of all the results.
e.g. >>> perform computations (3, [square, cube])
[9, 27]

def perform computation(num, computation funcs):

