CSI134 Lecture 33;
Sorting

Announcements & Logistics
HW 10 due today @ 10 pm

L ast

WI

- Lab 10 starts (and hopefully finishes) in this week's labs

» Very short lab on searching and sorting (today's lecture)

- No prelab

- Individual lab but can discuss strategies with lab mate

CS134 Scheduled Final: Friday, May 17, 9:30 AM
Room: TCL 123 (Wege Auditorium) *

Do You Have Any Questions?

Last Time: Searching & Eftficiency

» Searching requires scanning through entire list in the worst case

+ O(n) where n is the size of the list

* We can do better if the list Is sorted!

« O(log n) by using binary search

O(n?)

O(n)

Time —»

O(1)

Number of Elements —

JToday: Sorting

» Discuss some classic sorting algorithms:

+ Selection sorting in O(n?) time

- A brief (high level) discussion of how we can improve sorting to

O(nlogn)

-+ Overview of recursive merge sort algorithm

Sorting

Sorting

Problem: Given a sequence of unordered elements, we need to sort

the elements in ascending order.
There are many ways to solve this problem!
Bullt-in sorting functions/methods In Python
sorted():function that returns a sorted list

sort(): list method that and sorts the list

Today: how do we design our own sorting algorithm!?
Question: What Is the best (most efficient) way to sort n items?

We will use Big-O to find out!

Selection Sort

A possible approach to sorting elements in a list/array:
Find the smallest element and move (swap) it to the first posrtion

Repeat: find the second-smallest element and move It to the
second position, and so on

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second
position, and so on

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second
position, and so on

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move 1t to the second
position, and so on

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move 1t to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move 1t to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move 1t to the second

position, and so on

The gold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second

position, and so on

The cold bars represent the sorted portion of the list.

Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

And now we're finally done!

Selection Sort

Generalize: For each index i in the list 1st, we need to find the min
tem in Lst[i:] sowe canreplace Lst[1i] with that item

In fact we need to find the position min_1ndexX of the item that is
the minimum in Lst[i:]

Reminder: how to swap values of variables @ and b?
in-line swapping: a, b = b, a

How do we implement this algorithm?

Selection Sort

def selection_sort(my_lst):

"""Selection sort of a given mutable sequence my_lst,
sorts my_Llst by mutating it. Uses selection sort."""

You will work on this helper

find size function in Lab 10

n = len(my_1st)

traverse through all elements
for i in range(n):

find min element in the sublist from index i1i+1 to end
min_index = get min_index(my_lst, 1i)

swap min element with current element at 1
my Ust[i], my_1st[min_index] = my_1lst[min_index], my_lst[i]

Selection Sort

def selection_sort(my_lst):

"""Selection sort of a given mutable sequence my_lst,
sorts my_Llst by mutating it. Uses selection sort."""

Even without an implementation,
find size can we guess how many steps
n = len(my_1st) does this function need to take!?

traverse through all elements
for i in range(n):

find min element in the sublist from index i+1 to end
min_index = get min_index(my_lst, 1i)

swap min element with current element at 1
my Ust[i], my_1st[min_index] = my_1lst[min_index], my_lst[i]

Selection Sort Analysis

The helper function get_min_index must iterate through index 1 to
N to find the min item

When 1 = 0 thisis n steps

When 1

1 thisis N—=1 steps
When 1 = 2 thisis N—=2 steps
And so on,until 1 = n=1 thisis 1 step

Thus overall number of steps is sum of inner loop steps
n-1H+n-2)+--4+0n+n-1H+m-2)+--+1

What is this sum? (You will see this in MATH 200 if you take 1t.)

Selection Sort Analysis: Visual

n+Mm1)+...+2+1=nn+1)/2

N\
\

Selection Sort Analysis: Algebraic

S=n+m-1D)+n-2)+---4+34+2+1
+ S=14+24+3+--+n-2)+n—-1)+n

2S=m+D+n+DH)+---+@+D+m+1D)+ @B+ 1)

2S5=n+1)-n
S=mn+1)-n-1/2

- Total number of steps taken by selection sort is thus:

. O(n(n+ 1)/2) = 0m(n+1)) =0 +n) = 00>

How Fast |s Selection Sort!?

2

- Selection sort takes approximately n“ steps!

O(n?)

O(n)

Time ——

O(1)

Number of Elements —>

More Efficient Sorting:
Merge Sort

JTowards an O(nlogn) Algorithm

- There are other sorting algorithms that compare and rearrange elements in

different ways, but are still O(n?) steps

» Any algorithm that takes n steps to move each item n positions (in

the worst case) will take at least O(n?) steps
. To do better than n?, we need to move an item in fewer than n steps

* We can sort in O(nlog n) time if we are clever: Merge sort algorithm

(Invented by John von Neumann in 1945)

Merge Sort: Basic |dea

- If we split the list in half, sorting the left and right half are smaller
versions of the same problem

» Algorithm:

» (Divide) Recursively sort left and right half (O(log n))

* (Unite) Merge the sorted halves into a single sorted list (O(n))

n = len(lst)

12 219 | 4 11 /114 5 13

W
=

1st

m n//2

Merging Sorted Lists

Problem. Given two sorted lists @ and b, how quickly can we merge
them Into a single sorted list?

a b
2 41 9 11 12 11 3.5 7113 14
1]

merged list C

Merging Sorted Lists

salil <= blj] ?

* Yes,all] appendedto C
+ No,b[j] appended to C
d
2 4] 9 11 12
1

1

3

5

/113 14

‘x

]

merged list C

Merging Sorted Lists

salil <= b[j] ?
- Yes,a[1] appended to C
+ No,b[j] appended to C

a b

2 4 9 11 12 1 3.5 711314

k merged list cC

Merging Sorted Lists

salil <= blj] ?

. Yes,a[i] appended to C
- No,b[j] appended to C
d
2 4 9111112 11 315 7 13 14
i ;
1

k merged list cC

Merging Sorted Lists

salil <= blj] ?

. Yes,a[i] appended to C
- No,b[j] appended to C
d
2 4 9111112 11 315 7 13 14
' ;
1

k merged list cC

Merging Sorted Lists

salil <= blj] ?

. Yes,a[i] appended to C
- No,b[j] appended to C
d
2 4 9111112 11 315 7 13 14
' !
1 3

k merged list c

Merging Sorted Lists

salil <= b[j] ?
- Yes,a[1] appended to C
+ No,b[j] appended to C

a b
2 4 9 11 12 1 35 7 113 14
i]

11213 |4 |5 I 9 | 11| 12 |13 | 14

*

merged list cC k

Merging Sorted Lists

def merge(a, b):
"""Merges two sorted lists a and b,
and returns new merged list c"""

Walk through lists a, b, ¢ # ir_\itli(alige ;ar;ables
. o e i, J, = ’ ’
Maintaining current position of len a, len b = len(a), len(b)

c =[]
traverse and populate new list
while 1 < len_a and j < len_b:

indices 1, j, k

Compare ali] and b[J],

| | | if alil <= bljl:
whichever is smaller gets put In it alil <= bl

c.append(alil)

the spot of c[K] i 4= 1
else: |
Merging two sorted lists into E'igpind(b[l“

one is an O(n) step algorithm!

handle remaining values
. if 1 < len_a:
Can use this merge procedure c.extend(ali:])

to design Our recursive merge clif | < lenb:
sort algorithm! c.extend(b[j:])

return c

Merge Sort Algorithm

def merge_sort(1lst):

» Base case: If list Is empty or ninGiven a list lst, returns
contains a single element: it is a new list that is 1st sorted
already sorted in ascending order."""

n = len(lst)

 Recursive case:
base case

- Recursively sort left and if n ==0 or n ==
right halves return 1st
- Merge the sorted lists into a else:

single list and return it m = n//2 # middle
recurse on left & right half
sort_1lt = merge_sort(lst[:m])
sort_rt = merge_sort(lst[m:])

» Question:

- Where Is the sorting

| I
actually taking places # return merged list

return merge(sort_1t, sort_rt)

11

13

Merge Sort Example
121 219 | 4 |11 141 5 13
e S
121 21 9 4 11 14 5 13
2~ SN &~ N

121 2 [|19 | 4 |11 141 5 13

A" "ANA"

12(12119 ||4 |11 14| 5 |13
5

Merge Sort Exam

D|e

Q’E 1{7 _5{13
9 || 4 |11 1| 7| |14 5’(1?
L'V 4 h'V4
4 9 |11 3@1314
\/
9 | 11 12 3 /5 7 13|14
~ ,—
34 5 9 | 11|12 |13 | 14

Merge Sort: Basic |dea

- If we split the list in half, sorting the left and right half are smaller
versions of the same problem

» Algorithm:

» (Divide) Recursively sort left and right half (O(log n))

* (Unite) Merge the sorted halves into a single sorted list (O(n))

O(log n)
n = len(lst)

12 219 | 4 11 1 17 14 5 13

09

1st

m n//2

Big Oh Comparisons

. Selection sort: O(n?)

»+ Merge sort: O(nlog n)

O(n?) O(n log n)

O(n)

Time —»

O(1)

Number of Elements —>

