CSI34 Lecture 33: Sorting

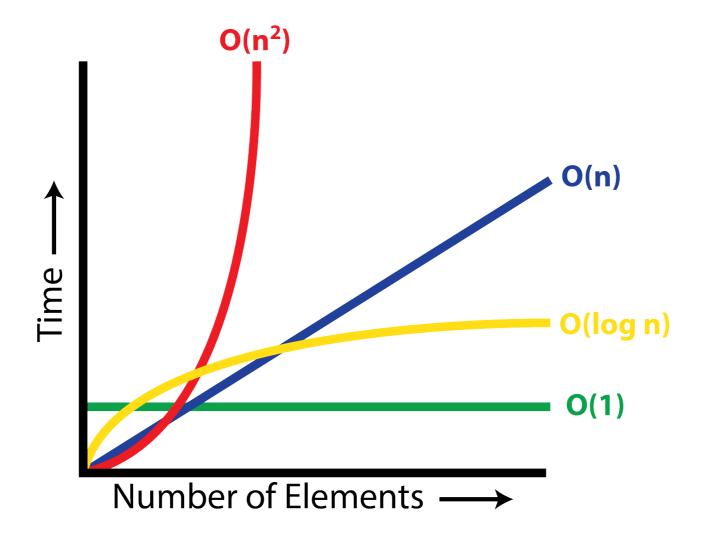
Announcements & Logistics

- HW 10 due today @ 10 pm
 - Last HW!
- Lab 10 starts (and hopefully finishes) in this week's labs
 - Very short lab on searching and sorting (today's lecture)
 - No prelab
 - Individual lab but can discuss strategies with lab mate
- CS134 Scheduled Final: Friday, May 17, 9:30 AM
 - Room: TCL 123 (Wege Auditorium) *

Do You Have Any Questions?

Last Time: Searching & Efficiency

- · Searching requires scanning through entire list in the worst case
 - O(n) where n is the size of the list
- We can do better if the list is sorted!
 - O(log n) by using binary search



Today: Sorting

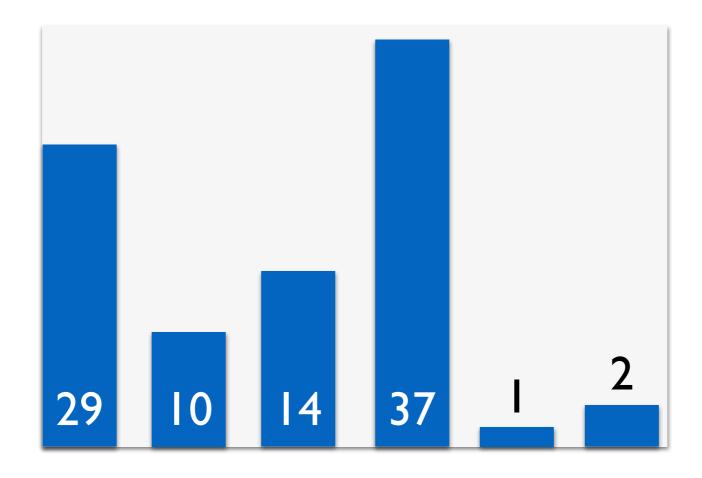
- Discuss some classic sorting algorithms:
 - Selection sorting in $O(n^2)$ time
 - A brief (high level) discussion of how we can improve sorting to $O(n \log n)$
 - Overview of recursive *merge sort* algorithm

Sorting

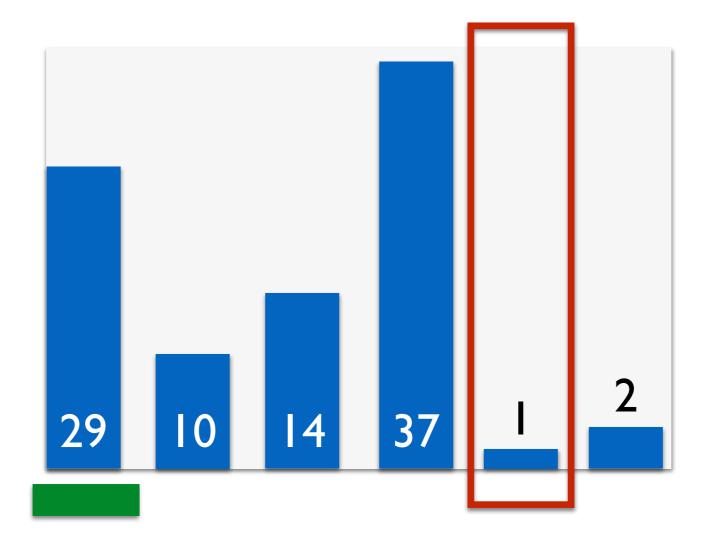
Sorting

- Problem: Given a sequence of unordered elements, we need to sort the elements in ascending order.
- There are many ways to solve this problem!
- Built-in sorting functions/methods in Python
 - sorted(): function that returns a new sorted list
 - **sort()**: *list method* that mutates and sorts the list
- Today: how do we design our own sorting algorithm?
- Question: What is the best (most efficient) way to sort *n* items?
- We will use Big-O to find out!

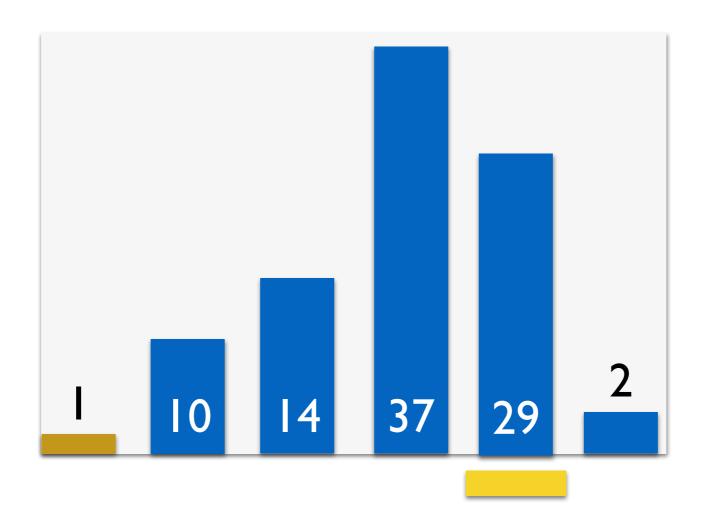
- A possible approach to sorting elements in a list/array:
 - Find the smallest element and move (swap) it to the first position
 - Repeat: find the second-smallest element and move it to the second position, and so on



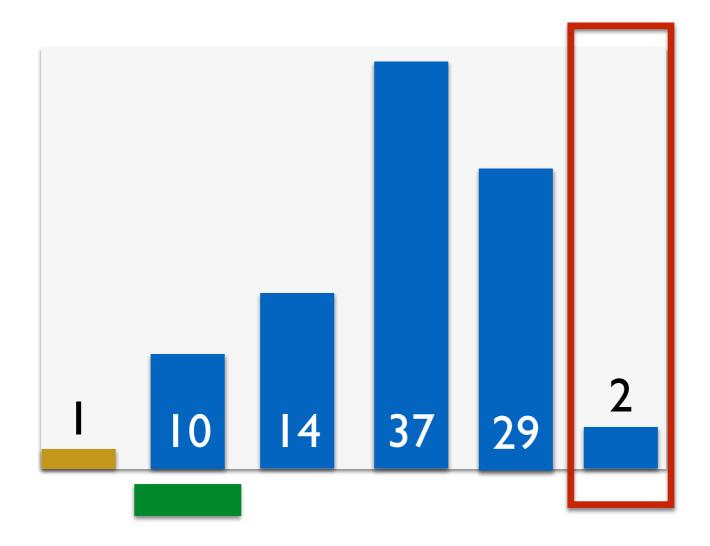
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on



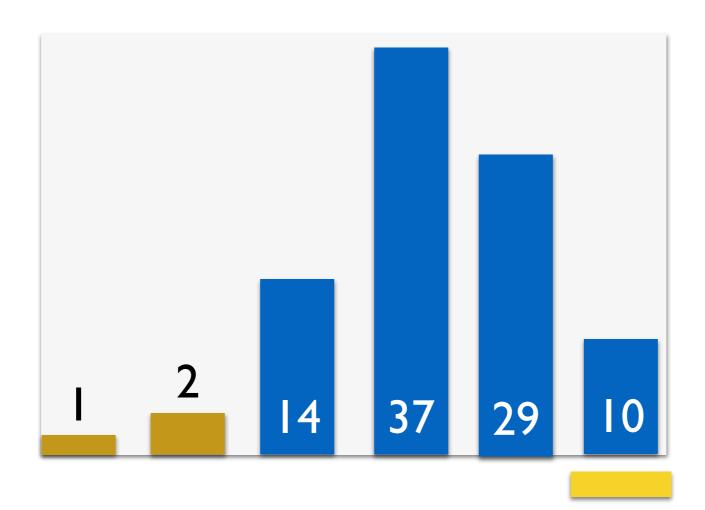
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on



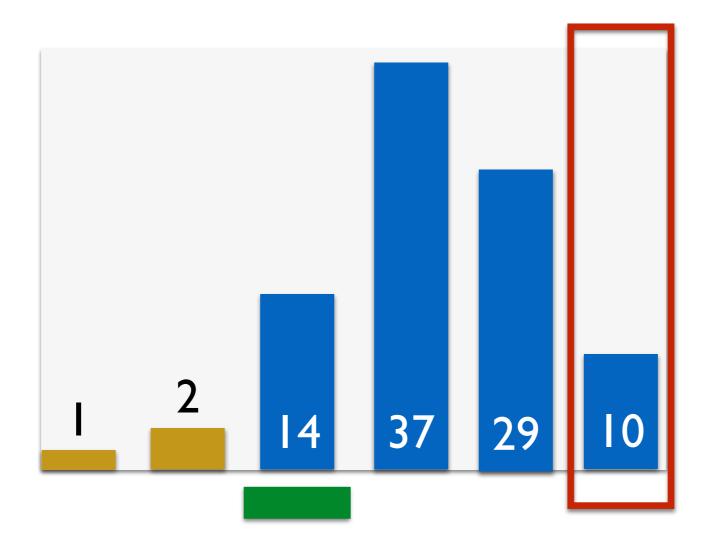
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on



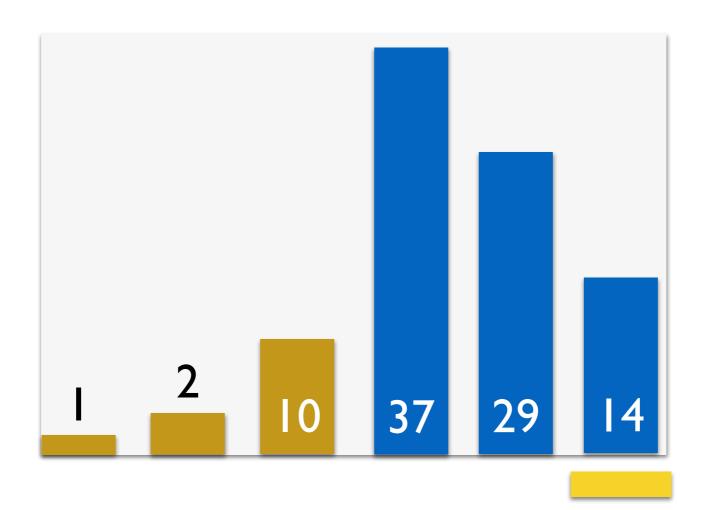
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.



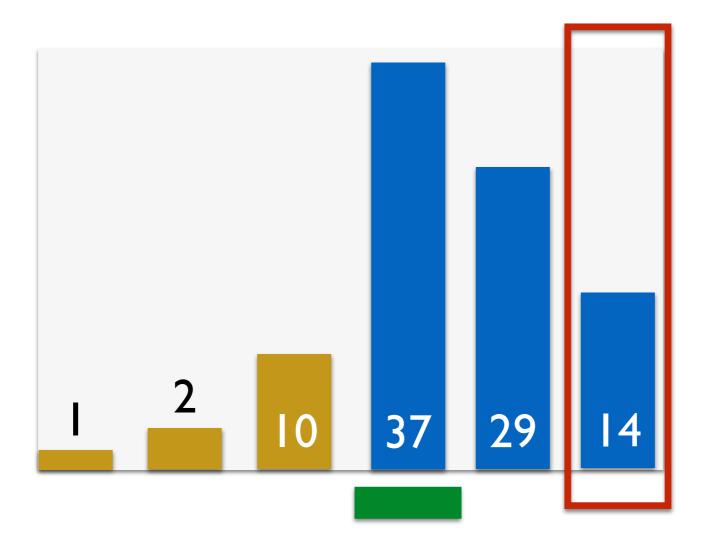
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.



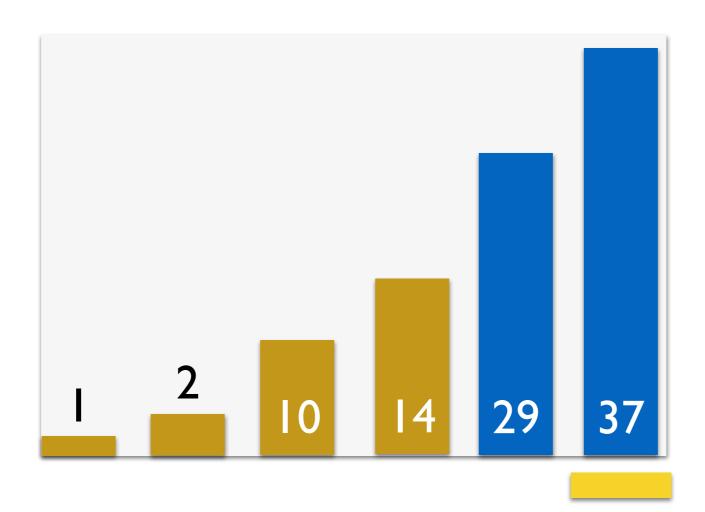
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.



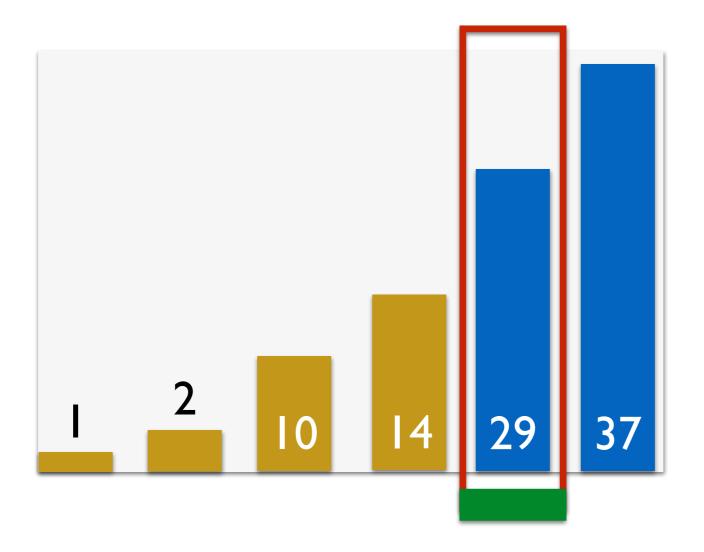
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.



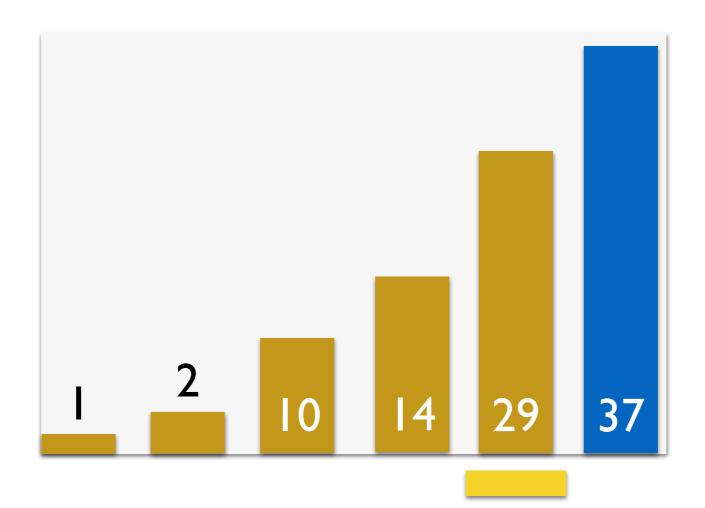
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.



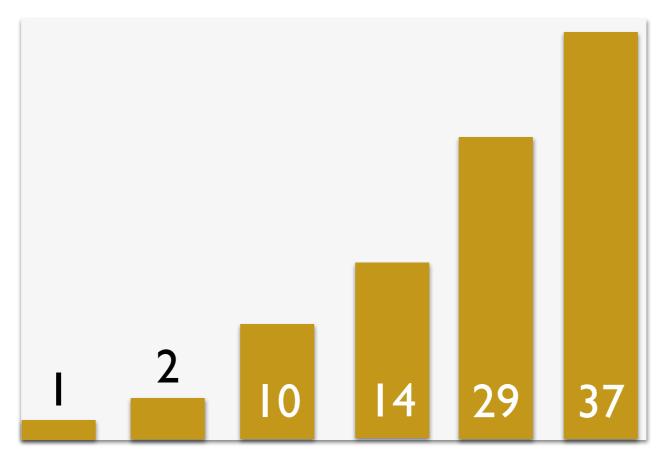
- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.



- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.



- Find the smallest element and move (swap) it to the first position
- Repeat: find the second-smallest element and move it to the second position, and so on
- The gold bars represent the sorted portion of the list.



And now we're finally done!

- Generalize: For each index i in the list lst, we need to find the min item in lst[i:] so we can replace lst[i] with that item
- In fact we need to find the position min_index of the item that is the minimum in lst[i:]
- Reminder: how to swap values of variables a and b?
 - in-line swapping: a, b = b, a
- How do we implement this algorithm?

```
def selection_sort(my_lst):
    """Selection sort of a given mutable sequence my_lst,
    sorts my_lst by mutating it. Uses selection sort."
                                                You will work on this helper
    # find size
                                                   function in Lab 10
    n = len(my_lst)
    # traverse through all elements
    for i in range(n):
        # find min element in the sublist from index i+1 to end
        min_index = get_min_index(my_lst, i)
        # swap min element with current element at i
        my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]
```

```
def selection_sort(my_lst):
    """Selection sort of a given mutable sequence my_lst,
    sorts my_lst by mutating it. Uses selection sort."
                                                 Even without an implementation,
                                                  can we guess how many steps
    # find size
                                                 does this function need to take?
    n = len(my_lst)
    # traverse through all elements
    for i in range(n):
        # find min element in the sublist from index i+1 to end
        min_index = get_min_index(my_lst, i)
        # swap min element with current element at i
        my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]
```

Selection Sort Analysis

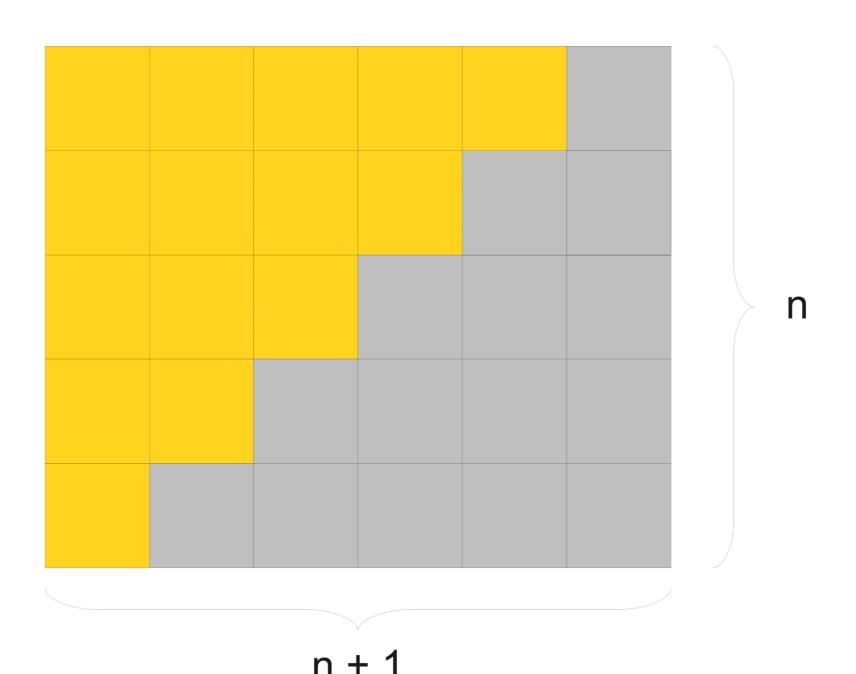
- The helper function get_min_index must iterate through index i to
 n to find the min item
 - When i = 0 this is n steps
 - When i = 1 this is n-1 steps
 - When i = 2 this is n-2 steps
 - And so on, until i = n-1 this is 1 step
- Thus overall number of steps is sum of inner loop steps

$$(n-1) + (n-2) + \dots + 0 \le n + (n-1) + (n-2) + \dots + 1$$

What is this sum? (You will see this in MATH 200 if you take it.)

Selection Sort Analysis: Visual

$$n + (n-1) + ... + 2 + 1 = n(n+1) / 2$$



Selection Sort Analysis: Algebraic

$$S = n + (n - 1) + (n - 2) + \dots + 3 + 2 + 1$$
+
$$S = 1 + 2 + 3 + \dots + (n - 2) + (n - 1) + n$$

$$2S = (n + 1) + (n + 1) + \dots + (n + 1) + (n + 1) + (n + 1)$$

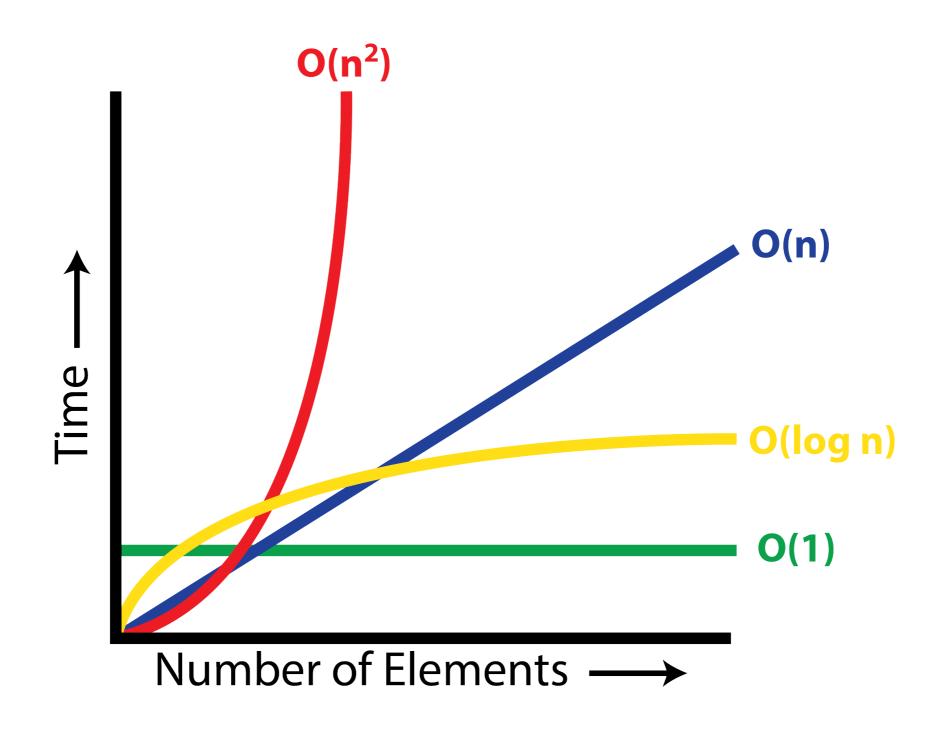
$$2S = (n + 1) \cdot n$$

$$S = (n + 1) \cdot n \cdot 1/2$$

- Total number of steps taken by selection sort is thus:
 - $O(n(n+1)/2) = O(n(n+1)) = O(n^2+n) = O(n^2)$

How Fast Is Selection Sort?

• Selection sort takes approximately n^2 steps!



More Efficient Sorting: Merge Sort

Towards an $O(n \log n)$ Algorithm

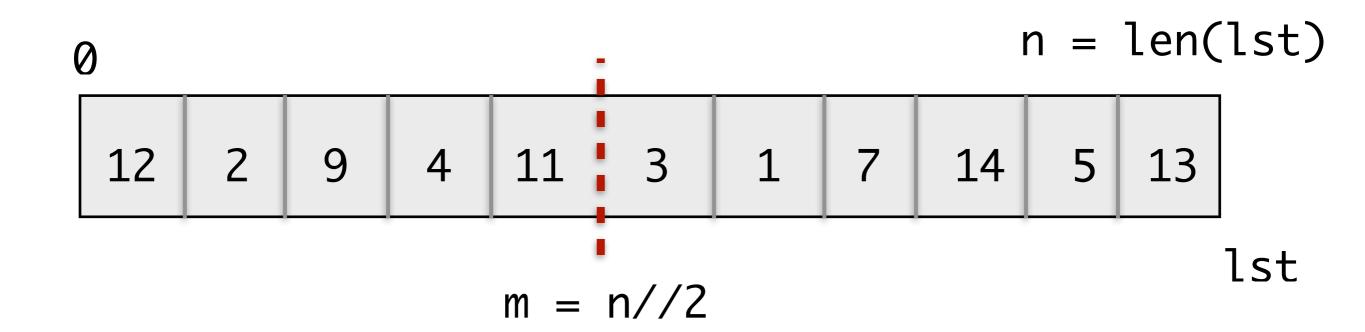
- There are other sorting algorithms that compare and rearrange elements in different ways, but are still $O(n^2)$ steps
 - Any algorithm that takes n steps to move each item n positions (in the worst case) will take at least $O(n^2)$ steps
 - To do better than n^2 , we need to move an item in fewer than n steps
- We can sort in $O(n \log n)$ time if we are clever: Merge sort algorithm (Invented by John von Neumann in 1945)

Merge Sort: Basic Idea

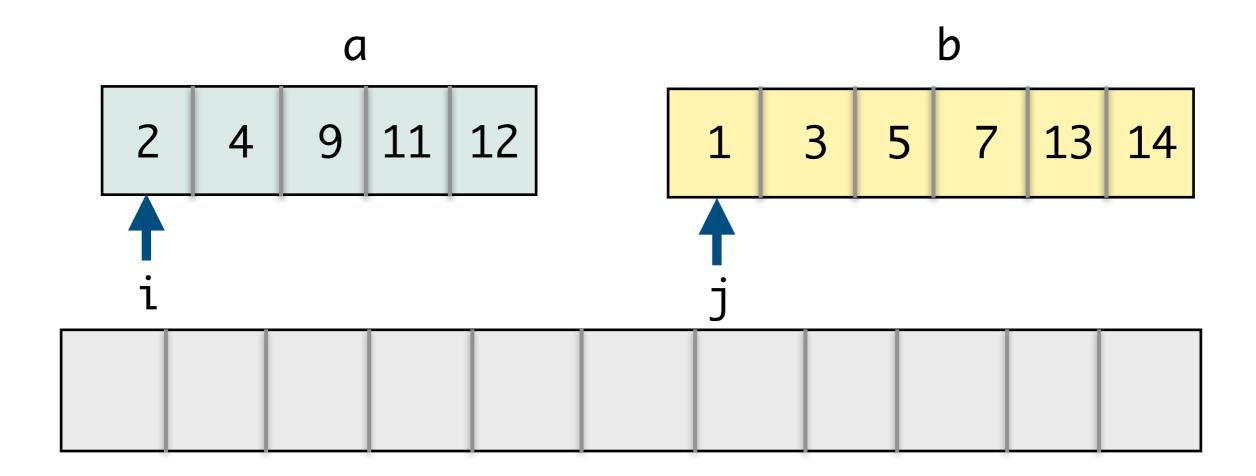
• If we split the list in half, sorting the left and right half are smaller versions of the same problem

Algorithm:

- (Divide) Recursively sort left and right half $(O(\log n))$
- (Unite) Merge the sorted halves into a single sorted list (O(n))



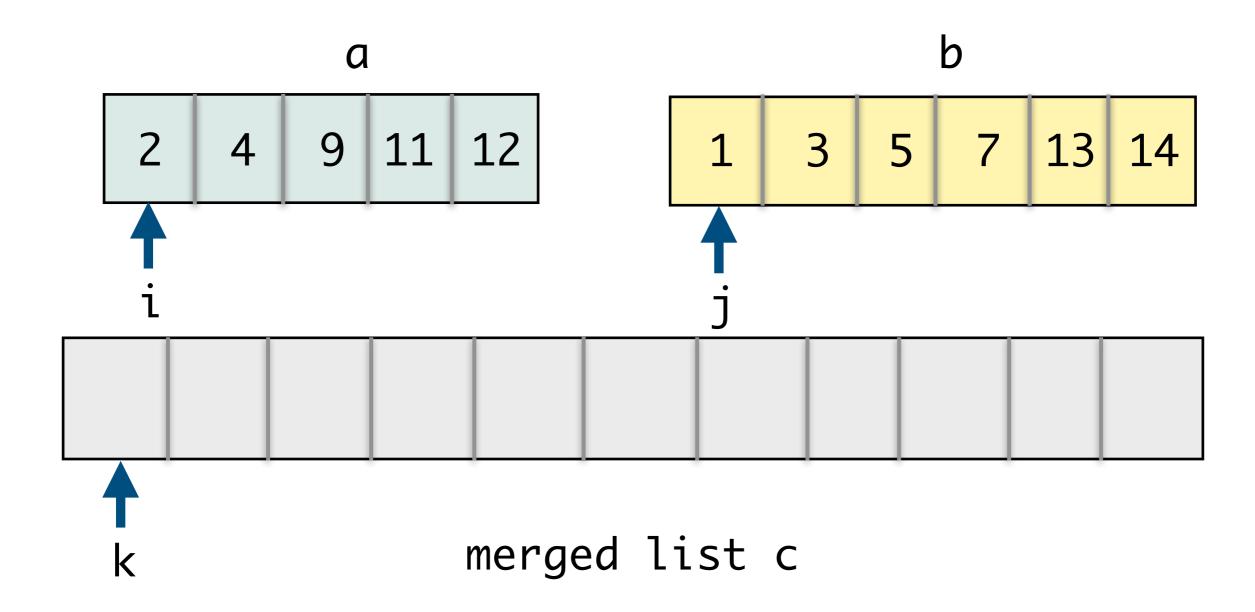
 Problem. Given two sorted lists a and b, how quickly can we merge them into a single sorted list?



merged list c

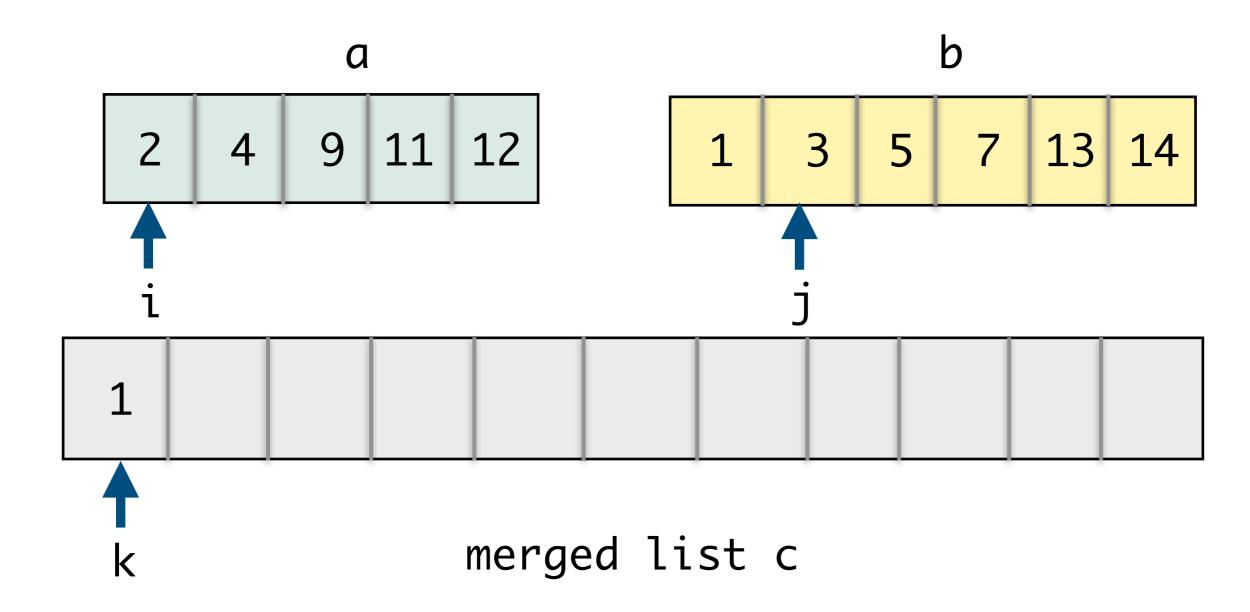
```
ls a[i] \le b[j]?
```

- Yes, a[i] appended to c
- No, b[j] appended to C



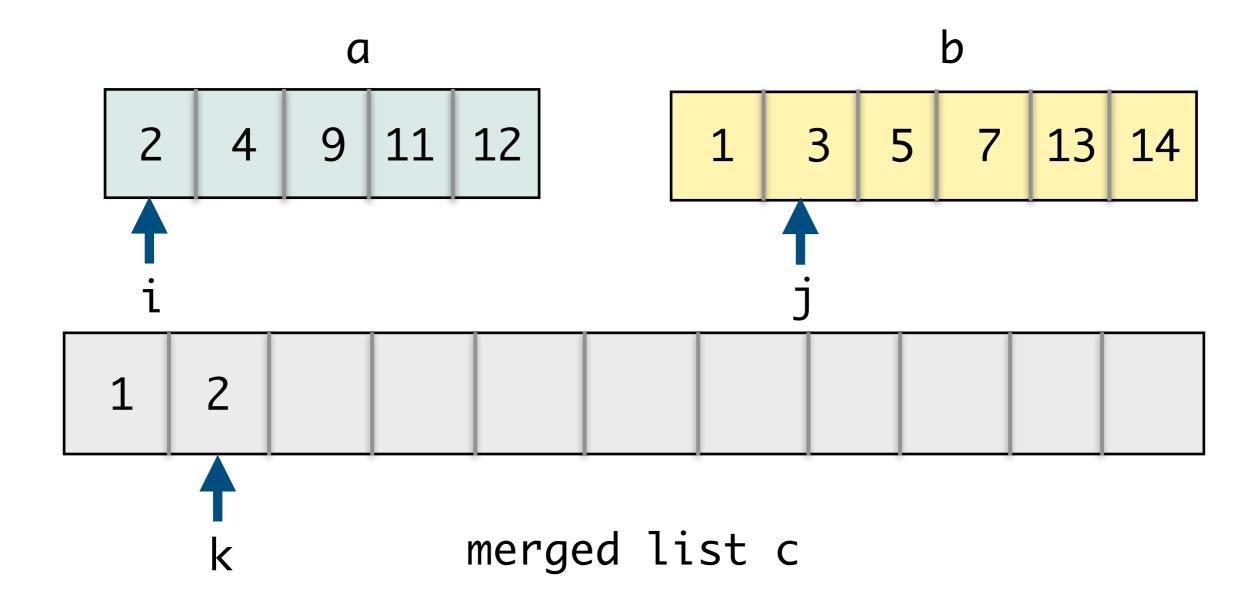
```
ls a[i] \le b[j]?
```

- Yes, a[i] appended to c
- No, b[j] appended to C



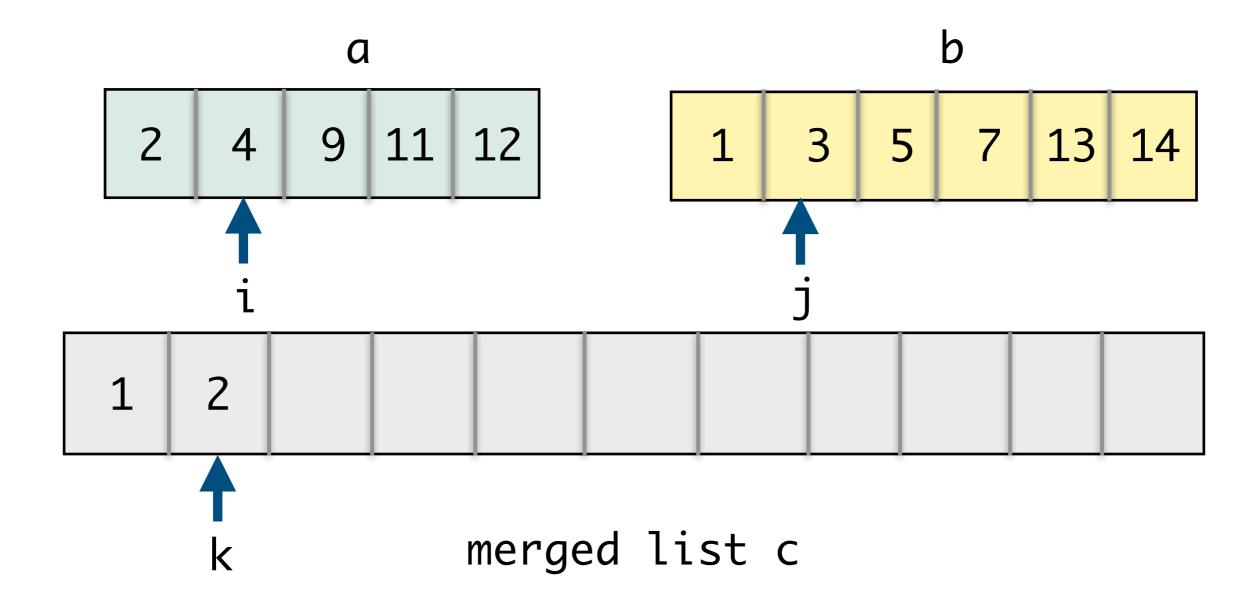
```
ls a[i] \le b[j]?
```

- Yes, a[i] appended to C
- No, b[j] appended to C



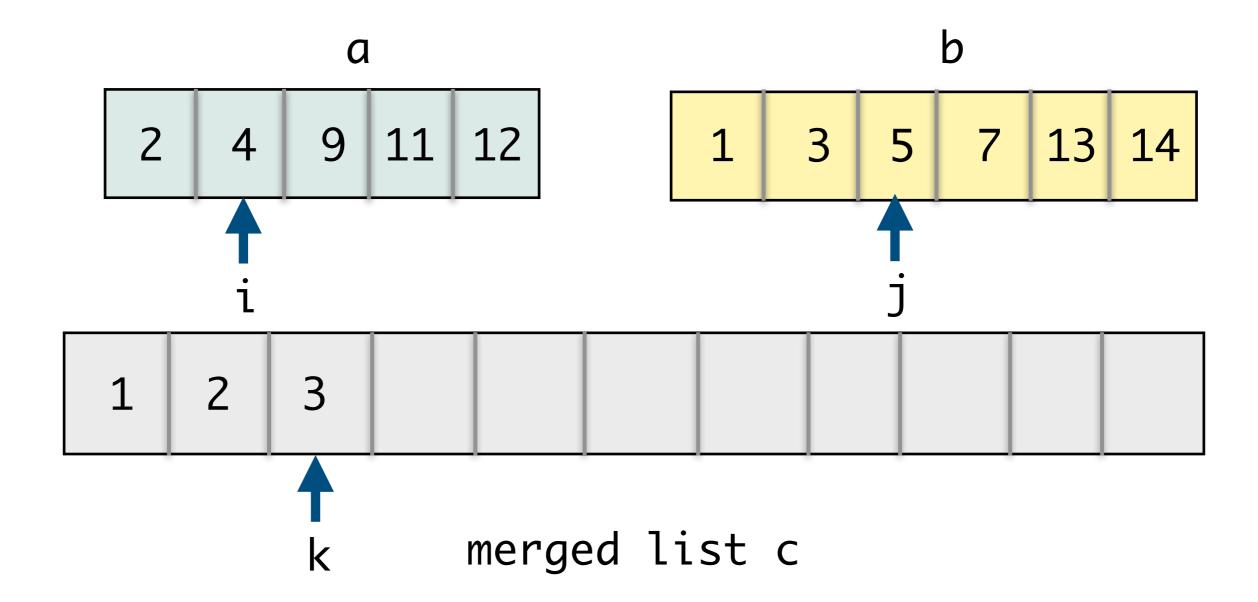
```
ls a[i] \le b[j]?
```

- Yes, a[i] appended to C
- No, b[j] appended to C



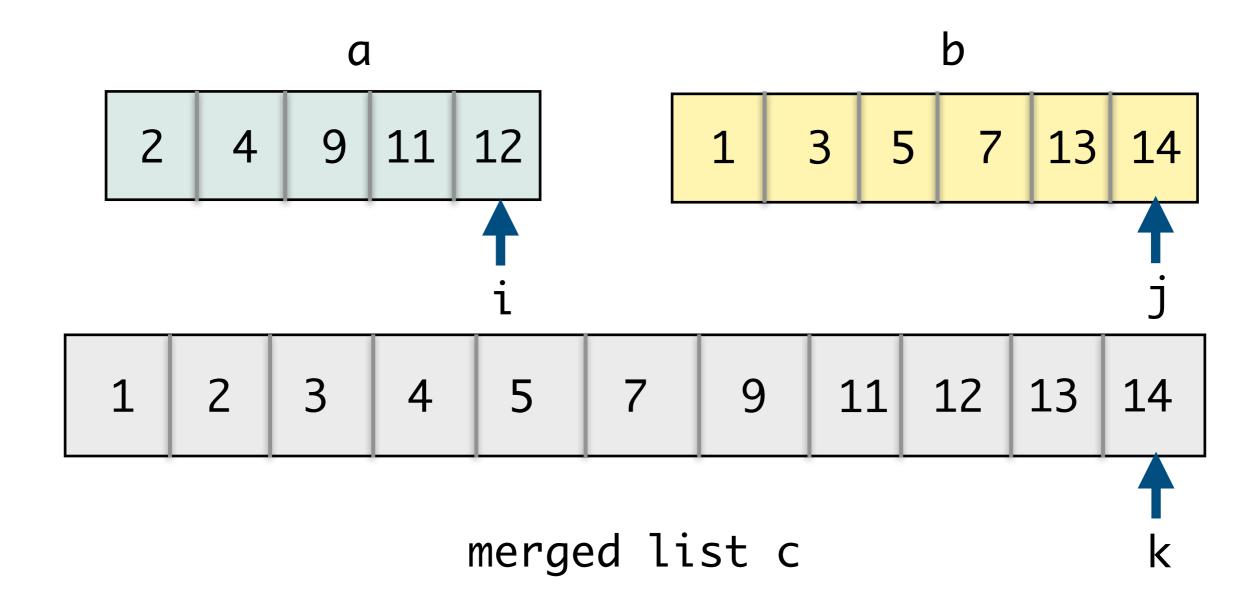
```
ls a[i] \le b[j]?
```

- Yes, a[i] appended to C
- No, b[j] appended to C



```
ls a[i] \le b[j]?
```

- Yes, a[i] appended to c
- No, b[j] appended to C



- Walk through lists a, b, c maintaining current position of indices i, j, k
- Compare a[i] and b[j], whichever is smaller gets put in the spot of c[k]
- Merging two sorted lists into one is an O(n) step algorithm!
- Can use this merge procedure to design our recursive merge sort algorithm!

```
def merge(a, b):
    """Merges two sorted lists a and b,
    and returns new merged list c"""
    # initialize variables
    i, j, k = 0, 0, 0
    len_a, len_b = len(a), len(b)
    c = []
    # traverse and populate new list
    while i < len_a and j < len_b:</pre>
        if a[i] <= b[j]:</pre>
             c.append(a[i])
             i += 1
        else:
             c.append(b[j])
             i += 1
    # handle remaining values
    if i < len_a:</pre>
        c.extend(a[i:])
    elif j < len_b:</pre>
        c.extend(b[j:])
    return c
```

Merge Sort Algorithm

 Base case: If list is empty or contains a single element: it is already sorted

Recursive case:

- Recursively sort left and right halves
- Merge the sorted lists into a single list and return it

Question:

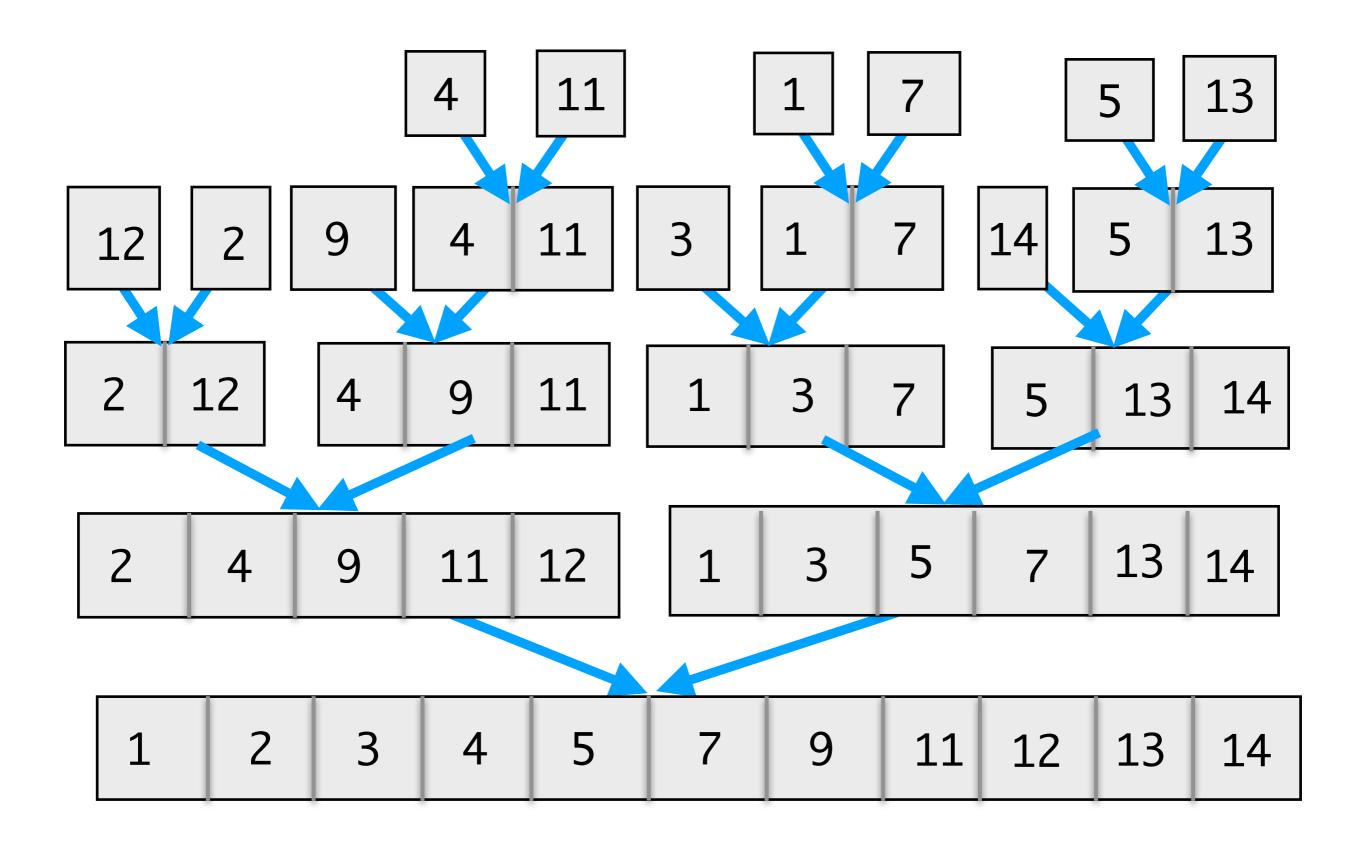
 Where is the sorting actually taking place?

```
def merge_sort(lst):
    """Given a list lst, returns
    a new list that is 1st sorted
    in ascending order."""
    n = len(lst)
    # base case
    if n == 0 or n == 1:
        return lst
    else:
        m = n//2 \# middle
        # recurse on left & right half
        sort_lt = merge_sort(lst[:m])
        sort_rt = merge_sort(lst[m:])
        # return merged list
        return merge(sort_lt, sort_rt)
```

Merge Sort Example

12	2	9	4	11	3	1	7	14	5	13	
12	2	9	4	11	3	1	7	14	5	13	
12	2	9	4	11	3	1	7	14	5	13	
12	2	9	4	11	3	1	7	14	5	13	
			4	11		1	7		5	13	

Merge Sort Example

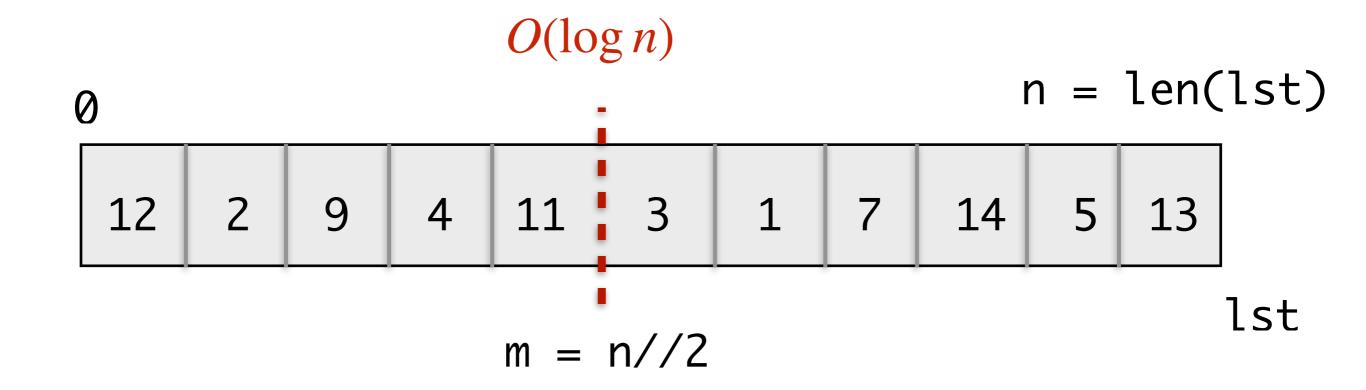


Merge Sort: Basic Idea

• If we split the list in half, sorting the left and right half are smaller versions of the same problem

Algorithm:

- (Divide) Recursively sort left and right half $(O(\log n))$
- (Unite) Merge the sorted halves into a single sorted list (O(n))



Big Oh Comparisons

- Selection sort: $O(n^2)$
- Merge sort: $O(n \log n)$

