CSI134 Lecture 33;
Sorting



Announcements & Logistics
HW 10 due today @ 10 pm

L ast

WI

- Lab 10 starts (and hopefully finishes) in this week's labs

» Very short lab on searching and sorting (today's lecture)

- No prelab

- Individual lab but can discuss strategies with lab mate

CS134 Scheduled Final: Friday, May 17, 9:30 AM
Room: TCL 123 (Wege Auditorium) *

Do You Have Any Questions?



Last Time: Searching & Eftficiency

» Searching requires scanning through entire list in the worst case

+ O(n) where n is the size of the list

* We can do better if the list Is sorted!

« O(log n) by using binary search

O(n?)

O(n)

Time —»

O(1)

Number of Elements —



JToday: Sorting

» Discuss some classic sorting algorithms:

+ Selection sorting in O(n?) time

- A brief (high level) discussion of how we can improve sorting to

O(nlogn)

-+ Overview of recursive merge sort algorithm



Sorting



Sorting

Problem: Given a sequence of unordered elements, we need to sort

the elements in ascending order.
There are many ways to solve this problem!
Bullt-in sorting functions/methods In Python
sorted( ):function that returns a sorted list

sort(): list method that and sorts the list

Today: how do we design our own sorting algorithm!?
Question: What Is the best (most efficient) way to sort n items?

We will use Big-O to find out!



Selection Sort

A possible approach to sorting elements in a list/array:
Find the smallest element and move (swap) it to the first posrtion

Repeat: find the second-smallest element and move It to the
second position, and so on
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Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second
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Selection Sort

Find the smallest element and move (swap) It to the first position

Repeat: find the second-smallest element and move It to the second

position, and so on

The gold bars represent the sorted portion of the list.

And now we're finally done!



Selection Sort

Generalize: For each index i in the list 1st, we need to find the min
tem in Lst[i:] sowe canreplace Lst[1i] with that item

In fact we need to find the position min_1ndexX of the item that is
the minimum in Lst[i:]

Reminder: how to swap values of variables @ and b?
in-line swapping: a, b = b, a

How do we implement this algorithm?



Selection Sort

def selection_sort(my_lst):

"""Selection sort of a given mutable sequence my_lst,
sorts my_Llst by mutating it. Uses selection sort."""

You will work on this helper

# find size function in Lab 10

n = len(my_1st)

# traverse through all elements
for i in range(n):

# find min element in the sublist from index i1i+1 to end
min_index = get min_index(my_lst, 1i)

# swap min element with current element at 1
my Ust[i], my_1st[min_index] = my_1lst[min_index], my_lst[i]



Selection Sort

def selection_sort(my_lst):

"""Selection sort of a given mutable sequence my_lst,
sorts my_Llst by mutating it. Uses selection sort."""

Even without an implementation,
# find size can we guess how many steps
n = len(my_1st) does this function need to take!?

# traverse through all elements
for i in range(n):

# find min element in the sublist from index i+1 to end
min_index = get min_index(my_lst, 1i)

# swap min element with current element at 1
my Ust[i], my_1st[min_index] = my_1lst[min_index], my_lst[i]



Selection Sort Analysis

The helper function get_min_index must iterate through index 1 to
N to find the min item

When 1 = 0 thisis n steps

When 1

1 thisis N—=1 steps
When 1 = 2 thisis N—=2 steps
And so on,until 1 = n=1 thisis 1 step

Thus overall number of steps is sum of inner loop steps
n-1H+n-2)+--4+0n+n-1H+m-2)+--+1

What is this sum? (You will see this in MATH 200 if you take 1t.)



Selection Sort Analysis:  Visual

n+Mm1)+...+2+1=nn+1)/2

N\
\




Selection Sort Analysis: Algebraic

S=n+m-1D)+n-2)+---4+34+2+1
+ S=14+24+3+--+n-2)+n—-1)+n

2S=m+D+n+DH)+---+@+D+m+1D)+ @B+ 1)

2S5=n+1)-n
S=mn+1)-n-1/2

- Total number of steps taken by selection sort is thus:

. O(n(n+ 1)/2) = 0m(n+1)) =0 +n) = 00>



How Fast |s Selection Sort!?

2

- Selection sort takes approximately n“ steps!

O(n?)

O(n)

Time ——

O(1)

Number of Elements —>



More Efficient Sorting:
Merge Sort



JTowards an O(nlogn) Algorithm

- There are other sorting algorithms that compare and rearrange elements in

different ways, but are still O(n?) steps

» Any algorithm that takes n steps to move each item n positions (in

the worst case) will take at least O(n?) steps
. To do better than n?, we need to move an item in fewer than n steps

* We can sort in O(nlog n) time if we are clever: Merge sort algorithm

(Invented by John von Neumann in 1945)



Merge Sort: Basic |dea

- If we split the list in half, sorting the left and right half are smaller
versions of the same problem

» Algorithm:

» (Divide) Recursively sort left and right half (O(log n))

* (Unite) Merge the sorted halves into a single sorted list (O(n))

n = len(lst)

12 219 | 4 11 /114 5 13

W
=

1st

m n//2



Merging Sorted Lists

Problem. Given two sorted lists @ and b, how quickly can we merge
them Into a single sorted list?

a b
2 41 9 11 12 11 3.5 7113 14
1 ]

merged list C



Merging Sorted Lists

salil <= blj] ?

* Yes,all] appendedto C
+ No,b[j] appended to C
d
2 4] 9 11 12
1

1

3

5

/113 14

‘x

]

merged list C




Merging Sorted Lists

salil <= b[j] ?
- Yes,a[1] appended to C
+ No,b[j] appended to C

a b

2 4 9 11 12 1 3.5 711314

k merged list cC



Merging Sorted Lists

salil <= blj] ?

. Yes,a[i] appended to C
- No,b[j] appended to C
d
2 4 9111112 11 315 7 13 14
i ;
1

k merged list cC




Merging Sorted Lists

salil <= blj] ?

. Yes,a[i] appended to C
- No,b[j] appended to C
d
2 4 9111112 11 315 7 13 14
' ;
1

k merged list cC




Merging Sorted Lists

salil <= blj] ?

. Yes,a[i] appended to C
- No,b[j] appended to C
d
2 4 9111112 11 315 7 13 14
' !
1 3

k merged list c




Merging Sorted Lists

salil <= b[j] ?
- Yes,a[1] appended to C
+ No,b[j] appended to C

a b
2 4 9 11 12 1 35 7 113 14
i ]

11213 |4 |5 I 9 | 11| 12 |13 | 14

*

merged list cC k



Merging Sorted Lists

def merge(a, b):
"""Merges two sorted lists a and b,
and returns new merged list c"""

Walk through lists a, b, ¢ # ir_\itli(alige ;ar;ables
. o e i, J, = ’ ’
Maintaining current position of len a, len b = len(a), len(b)

c =[]
# traverse and populate new list
while 1 < len_a and j < len_b:

indices 1, j, k

Compare ali] and b[J],

| | | if alil <= bljl:
whichever is smaller gets put In it alil <= bl

c.append(alil)

the spot of c[K] i 4= 1
else: |
Merging two sorted lists into E'igpind(b[l“

one is an O(n) step algorithm!

# handle remaining values
. if 1 < len_a:
Can use this merge procedure c.extend(ali:])

to design Our recursive merge clif | < lenb:
sort algorithm! c.extend(b[j:])

return c



Merge Sort Algorithm

def merge_sort(1lst):

»  Base case: If list Is empty or ninGiven a list lst, returns
contains a single element: it is a new list that is 1st sorted
already sorted in ascending order."""

n = len(lst)

 Recursive case:
# base case

- Recursively sort left and if n ==0 or n ==
right halves return 1st
- Merge the sorted lists into a else:

single list and return it m = n//2 # middle
# recurse on left & right half
sort_1lt = merge_sort(lst[:m])
sort_rt = merge_sort(lst[m:])

»  Question:

- Where Is the sorting

| I
actually taking places # return merged list

return merge(sort_1t, sort_rt)



11

13

Merge Sort Example
121 219 | 4 |11 141 5 13
e S
121 21 9 4 11 14 5 13
2~ SN &~ N

121 2 [|19 | 4 |11 141 5 13

A" "ANA"

12( 12119 ||4 |11 14| 5 |13
5




Merge Sort Exam

D|e

Q’E 1{7 _5{13
9 || 4 |11 1| 7| |14 5’(1?
L'V 4 h'V4
4 9 |11 3@1314
\/
9 | 11 12 3 /5 7 13|14
~ ,—
34 5 9 | 11|12 |13 | 14




Merge Sort: Basic |dea

- If we split the list in half, sorting the left and right half are smaller
versions of the same problem

» Algorithm:

» (Divide) Recursively sort left and right half (O(log n))

* (Unite) Merge the sorted halves into a single sorted list (O(n))

O(log n)
n = len(lst)

12 219 | 4 11 1 17 14 5 13

09

1st

m n//2



Big Oh Comparisons

. Selection sort: O(n?)

»+ Merge sort: O(nlog n)

O(n?) O(n log n)

O(n)

Time —»

O(1)

Number of Elements —>



