
CS134 Lecture 32:
Searching (& Sorting)

Announcements & Logistics
• HW 10 due Mon @ 10 pm

• Last HW on efficiency and Big Oh (Q5 updated with small fix)
• Lab 8 graded feedback will be returned soon

• Lab 10 will be released today
• Very short lab on searching and sorting (today's lecture)
• No prelab
• Individual lab but can discuss strategies with lab mate

• CS134 Scheduled Final: Friday, May 17, 9:30 AM

• Room: TCL 123 (Wege Auditorium) *

Do You Have Any Questions?

• Measured efficiency as number of steps taken by algorithm on worst-
case inputs of a given size

• Introduced Big-O notation: captures the rate at which the number of
steps taken by the algorithm grows wrt size of input , "as gets large"n n

Last Time: Efficiency

Today: Searching (and Sorting)
• Discuss recursive implementation of binary search

• Discuss some classic sorting algorithms:

• Selection sorting in time

• A brief (high level) discussion of how we can improve it to

• Overview of recursive merge sort algorithm

O(n2)

O(n log n)

Searching in a Sequence

Search
• Search. Given an input sequence seq, search if a given item is in the

sequence.

• For example, if a name is in a sequence of student names

• Input: a sequence of items and a query item

• For now suppose this can be in any order

• Output: True if query item is in sequence, else False

• Can use in operator to do this (calls __contains__)

• But without knowing how it works, can't analyze efficiency

• Let's figure out a direct way to solve this problem

n

• First algorithm: iterate through the items in sequence and compare each
item to query

def linear_search(item, seq):
 for elem in seq:
 if elem == item:
 return True
 return False

Might return early if item is first elem
in seq, but we are interested in the

worst case analysis; worst case is
if item is not in seq at all

Searching in a Sequence

5 3 11 ...

0 1 2 3

8

n-1...

45

• In the worst case, we have to walk through the entire sequence

• Overall, the number of steps is linear in : we write in Big Ohn O(n)

Searching in a Sequence

def linear_search(item, seq):
 for elem in seq:
 if elem == item:
 return True
 return False

Loop runs items
in worst case

n

One equality check per
iteration: assume comparing

elem == item is one step

5 3 11 ...

0 1 2 3

8

n-1...

45

Searching in an Array
• Can we do better?

• Not if the elements are in arbitrary order

• What if the sequence is sorted?

• Can we utilize this somehow and search more efficiently?

5 7 11 ...

0 1 2 3

3 89

n-1...

How do we search for an item (say 10) in a sorted array?

Let’s Play a Game
• I’m thinking of a number between 0 and 100…

• If you guess a number, I’ll tell you either:
• You’ve guessed my number!
• My number is larger than your guess
• My number is smaller than your guess

• What is your guessing strategy?

• What if I picked a number between 0 and 1 million?

• The search algorithm we just discussed to guess a number can be
used search in a sorted list. It's called binary search

• It can be much more efficient than a linear search

• Takes lookups if we can index into sequence efficiently

• Which data structure supports fast access/indexing?

• Accessing an item at index in an array requires constant time

• Accessing an item at index in a LinkedList can require traversing
the whole list (even if it is sorted!): linear time

• To get a more efficient search algorithm, it is not only important to use
the right algorithm, we need to use the right data structure as well!

≈ log n

i

i

Binary Search

• Base cases? When are we done?

• If list is too small (or empty) to continue searching, return False

• If item we’re searching for is the middle element, return True

Binary Search

mid = n//2

Check middle

• Recursive case:

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Binary Search

mid = n//2

If item < a_lst[mid], then need
to search in a_lst[:mid]

• Recursive case:

• Recurse on left side if item is smaller than middle

• Recurse on right side if item is larger than middle

Binary Search

mid = n//2

If item > a_lst[mid], then need
to search in a_lst[mid+1:]

Technically, there is one
small problem with our

implementation. List splicing
is actually O(n)!

def binary_search(seq, item):
 """Assume seq is sorted. If item is
 in seq, return True; else return False."""

 n = len(seq)

 # base case 1
 if n == 0:
 return False

 mid = n // 2
 mid_elem = seq[mid]

 # base case 2
 if item == mid_elem:
 return True

 # recurse on left
 elif item < mid_elem:
 left = seq[:mid]
 return binary_search(left, item)

 # recurse on right
 else:
 right = seq[mid+1:]
 return binary_search(right, item)

Binary Search: Improved

Passing start/end indices as
arguments avoids the need

to splice!

def binary_search_helper(seq, item, start, end):
 '''Recursive helper function used in binary search'''

 # base case 1
 if start > end:
 return False

 mid = (start + end) // 2
 mid_elem = seq[mid]

 if item == mid_elem:
 return True

 # recurse on left
 elif item < mid_elem:
 return binary_search_helper(seq, item, start, mid-1)

 # recurse on right
 else:
 return binary_search_helper(seq, item, mid+1, end)

def binary_search_improved(seq, item):

 return binary_search_helper(seq, item, 0, len(seq)-1)

More on Big Oh

• Tells you how fast an algorithm is / the run-time of algorithms

• But not in seconds!

• Tells you how fast the algorithm grows in number of operations

Big-O Notation

O(log n)
"Big O" Number of Operations

Understanding Big-O
• Notation: often denotes the number of elements (size)

• Constant time or : when an operation does not depend on the
number of elements, e.g.

• Addition/subtraction/multiplication of two values, or defining a
variable etc are all constant time

• Linear time or : when an operation requires time proportional
to the number of elements, e.g.:

for item in seq:  
 <do something>

• Quadratic time or : nested loops are often quadratic, e.g.,
for i in range(n):
 for j in range(n):
 <do something>

n

O(1)

O(n)

O(n2)

• Notation: often denotes the number of elements (size)
• Our goal: understand efficiency of some algorithms at a high level

n

Big-O: Common Functions

O(1)

O(n)

O(n2)

O(log n)

Sorting

Sorting
• Problem: Given a sequence of unordered elements, we need to sort

the elements in ascending order.

• There are many ways to solve this problem!

• Built-in sorting functions/methods in Python

• sorted(): function that returns a new sorted list

• sort(): list method that mutates and sorts the list

• Today: how do we design our own sorting algorithm?

• Question: What is the best (most efficient) way to sort items?

• We will use Big-O to find out!

n

Selection Sort
• A possible approach to sorting elements in a list/array:

• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the
second position, and so on

29 10 14 37 1 2

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

29 10 14 37 1 2

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

2910 14 37
21

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

2910 14 37
21

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 1014 371 2

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 1014 371 2

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

29 371 2
10 14

Selection Sort
• Find the smallest element and move (swap) it to the first position

• Repeat: find the second-smallest element and move it to the second
position, and so on

• The gold bars represent the sorted portion of the list.

And now we're finally done!

29 371 2
10 14

Selection Sort
• Generalize: For each index in the list lst, we need to find the min

item in lst[i:] so we can replace lst[i] with that item

• In fact we need to find the position min_index of the item that is
the minimum in lst[i:]

• Reminder: how to swap values of variables a and b?

• in-line swapping: a, b = b, a

• How do we implement this algorithm?

i

Selection Sort

def selection_sort(my_lst):
 """Selection sort of a given mutable sequence my_lst,
 sorts my_lst by mutating it. Uses selection sort."""

 # find size
 n = len(my_lst)

 # traverse through all elements
 for i in range(n):

 # find min element in the sublist from index i+1 to end

 min_index = get_min_index(my_lst, i)

 # swap min element with current element at i
 my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]

You will work on this helper
function in Lab 10

Selection Sort

def selection_sort(my_lst):
 """Selection sort of a given mutable sequence my_lst,
 sorts my_lst by mutating it. Uses selection sort."""

 # find size
 n = len(my_lst)

 # traverse through all elements
 for i in range(n):

 # find min element in the sublist from index i+1 to end

 min_index = get_min_index(my_lst, i)

 # swap min element with current element at i
 my_lst[i], my_lst[min_index] = my_lst[min_index], my_lst[i]

Even without an implementation,
can we guess how many steps

does this function need to take?

Selection Sort Analysis
• The helper function get_min_index must iterate through index i to

n to find the min item

• When i = 0 this is n steps

• When i = 1 this is n-1 steps

• When i = 2 this is n-2 steps

• And so on, until i = n-1 this is 1 step

• Thus overall number of steps is sum of inner loop steps

• What is this sum? (You will see this in MATH 200 if you take it.)

(n − 1) + (n − 2) + ⋯ + 0 ≤ n + (n − 1) + (n − 2) + ⋯ + 1

Selection Sort Analysis: Visual

Selection Sort Analysis: Algebraic

S = n + (n − 1) + (n − 2) + ⋯ + 2 + 1
S = 1 + 2 + ⋯ + (n − 2) + (n − 1) + n

2S = (n + 1) + (n + 1) + ⋯ + (n + 1) + (n + 1) + (n + 1)

+

2S = (n + 1) ⋅ n
S = (n + 1) ⋅ n ⋅ 1/2

• Total number of steps taken by selection sort is thus:
• O(n(n + 1)/2) = O(n(n + 1)) = O(n2 + n) = O(n2)

How Fast Is Selection Sort?
• Selection sort takes approximately steps!n2

More Efficient Sorting:
Merge Sort

Towards an AlgorithmO(n log n)
• There are other sorting algorithms that compare and rearrange elements in

different ways, but are still steps

• Any algorithm that takes steps to move each item positions (in
the worst case) will take at least steps

• To do better than , we need to move an item in fewer than steps

• We can sort in time if we are clever : Merge sort algorithm
(Invented by John von Neumann in 1945)

O(n2)

n n
O(n2)

n2 n

O(n log n)

• If we split the list in half, sorting the left and right half are smaller
versions of the same problem

• Algorithm:

• (Divide) Recursively sort left and right half ()

• (Unite) Merge the sorted halves into a single sorted list ()

O(log n)

O(n)

Merge Sort: Basic Idea

lst
m = n//2

0 n = len(lst)

12 2 9 4 11 3 1 7 14 5 13

• Problem. Given two sorted lists a and b, how quickly can we merge
them into a single sorted list?

Merging Sorted Lists

merged list c

a

122 94 11

i

31 7 145 13

b

j

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

2

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

2

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list ck

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

2 3

Merging Sorted Lists

a

122 94 11

i

31 7 145 13

b

j

merged list c k

1

Is a[i] <= b[j] ?
• Yes, a[i] appended to c
• No, b[j] appended to c

2 3 54 7 9 11 12 13 14

• Walk through lists
maintaining current position of
indices

• Compare and ,
whichever is smaller gets put in
the spot of

• Merging two sorted lists into
one is an step algorithm!

• Can use this merge procedure
to design our recursive merge
sort algorithm!

a, b, c

i, j, k

a[i] b[j]

c[k]

O(n)

Merging Sorted Lists
def merge(a, b):
 """Merges two sorted lists a and b,
 and returns new merged list c"""
 # initialize variables
 i, j, k = 0, 0, 0
 len_a, len_b = len(a), len(b)
 c = []
 # traverse and populate new list
 while i < len_a and j < len_b:

 if a[i] <= b[j]:
 c.append(a[i])
 i += 1
 else:
 c.append(b[j])
 j += 1

 # handle remaining values
 if i < len_a:
 c.extend(a[i:])

 elif j < len_b:
 c.extend(b[j:])

 return c

• Base case: If list is empty or
contains a single element: it is
already sorted

• Recursive case:
• Recursively sort left and

right halves
• Merge the sorted lists into a

single list and return it
• Question:

• Where is the sorting
actually taking place?

Merge Sort Algorithm
def merge_sort(lst):
 """Given a list lst, returns
 a new list that is lst sorted
 in ascending order."""
 n = len(lst)

 # base case
 if n == 0 or n == 1:
 return lst

 else:
 m = n//2 # middle

 # recurse on left & right half
 sort_lt = merge_sort(lst[:m])
 sort_rt = merge_sort(lst[m:])

 # return merged list
 return merge(sort_lt, sort_rt)

4 11 1 7 5 13

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13

Merge Sort Example

12 2 9 4 11 3 1 7 14 5 13

12 2 9 4 11 3 1 7 14 5 13

31 14132 4 5 7 9 11 12

2 12 4 9 11 135 141 3 7

Merge Sort Example

114

4 11 1 7 5 13

1 13512 2 9 3 147

122 94 11 31 7 145 13

• If we split the list in half, sorting the left and right half are smaller
versions of the same problem

• Algorithm:

• (Divide) Recursively sort left and right half ()

• (Unite) Merge the sorted halves into a single sorted list ()

O(log n)

O(n)

Merge Sort: Basic Idea

lst
m = n//2

0 n = len(lst)

12 2 9 4 11 3 1 7 14 5 13

O(log n)

Big Oh Comparisons
• Selection sort:

• Merge sort:

O(n2)

O(n log n)

