
CS134 Lecture 17:
Files & Plotting

Announcements & Logistics
• Almost Spring Break!
• Lab 5 due Friday noon (after midterm)
• Midterm reminders:

• Review examples posted on course schedule
• Sample Exam. Sample solutions posted (many possible ans)

• Exam Thurs 3/14 from 6-7:30pm OR 8-9:30pmI in Bronfman
• You need your anonymous ID!

• Instructor Help Hours Schedule: Wed 1-4 pm, Thurs 1-4 pm
• TA hours as usual this week

Do You Have Any Questions?

http://cs.williams.edu/~cs134/shikha/review.ipynb
https://glow.williams.edu/courses/3876190/files?preview=283724050

Last Time
• Discussed testing and debugging strategies

• how to approach different types of errors

• using print to debug loops and conditionals

Today
• Discuss a new "iterable" : files

• How to loop over files

• How to process the data, store it, manipulate it and plot it

Files

Working with Files in Python
• File I/O is a very common and important operation

• open(filename) is a built-in Python function for working with files

• filename is a path to a file as a string

• Using open() within a with … as code block, we can iterate over the lines
of a text file just as we iterated over strings and lists in previous lectures

Opening Files: with … as

with open(filename) as input_file:

do something with file

Note. (syntax) Indentation defines the body of the
with block where the file is open. File automatically

closed after with…as block.

Path to file on computer as a string

Variable name for your file

with open("data/mountains.txt") as book:
 for line in book:
 print(line)

Iterating over Lines in a File
• Within a with open(filename) as input_file: block, we can

iterate over the lines in the file just as we would iterate over any sequence
such as lists, strings, or ranges

• The end of a line in the text file is determined by the special newline
character '\n'

• Example: We have a text file mountains.txt within a directory data.
We can iterate and print each line as follows:

Variable name for your file

O, proudly rise the monarchs of our mountain land,

With their kingly forest robes, to the sky,

Where Alma Mater dwelleth with her chosen band,

And the peaceful river floweth gently by.

Path to file on computer as a string

'\n' between each line

with open("data/mountains.txt") as book:
 result = []
 for line in book:
 result += [line]
 print(result)

Iterating over Lines in a File
• Because the end of the line in a file is a newline character '\n' and

when we print(a_string) a newline character is added to the
end...we end up with an empty newline between each printed line!

['O, proudly rise the monarchs of our mountain land,\n',
 'With their kingly forest robes, to the sky,\n',
 'Where Alma Mater dwelleth with her chosen band,\n',
 'And the peaceful river floweth gently by.\n']

Removing Leading/Trailing Whitespace from a String

• Because the end of the line in a file is a newline character '\n' and
when we print(a_string) a newline character is added to the
end...we end up with an empty newline between each printed line!

• Let's write a function that will remove leading and trailing whitespaces.

>>> len('\n')
1

'\n' is one character! The backslash escapes the character.

s = '\n \t String with\t different\nspaces.\r\n\t'

spaces = ['\n', '\t', '\r', ' ']

'\n' newline '\t' newline '\r' return

Removing Leading/Trailing Whitespace from a String

• Let's write a function that will remove leading and trailing whitespaces.
def strip(line):
 # handle empty line somehow

 # return line?
 spaces = ['\n', '\t', '\r', ' ']

 # find where the words start
 # look at each character
 # if it's a space...keep looking
 # keep track of indices looked at

 # find where the word ends
 # look at each character in reverse
 # if it's a space...keep looking
 # keep track of indices looked at

 # return the string between the start and end index

Removing Leading/Trailing Whitespace from a String

• Let's write a function that will remove leading and trailing whitespaces.
def strip(line):
 if not line: # handle empty line
 return line
 spaces = ['\n', '\t', '\r', ' ']

 # find the first not-space
 start_index = 0
 while start_index<len(line) and line[start_index] in spaces:
 start_index += 1

 # find the last not-space
 end_index = len(line)-1
 while end_index>0 and line[end_index] in spaces:
 end_index -= 1

 return line[start_index:end_index+1]

>>> s = '\n \t String with\t different\nspaces.\r\n\t'
>>> strip(s)
'String with\t different\nspaces.'

Useful String and List Functions in File Reading

• When reading files, we may need to use some common string and list
operations to work with the data.

• We'll learn about the built-in features python has for these later in the semester,
but we can write our own with iterating over strings and accumulator variables!

• strip(line): Remove any leading/trailing white space or “\n”

• split(line, ','): Separate a comma-separated sequence of
words and create a list of strings

• join(' ', lines): Create a single “big” string with words separated
by spaces instead of commas

• count_appearances(ele, let): Count the occurrence of
various elements

• …and so on!

Common File Type: CSVs
• A CSV (Comma Separated Values) file is a specific type of plain text file

that stores “tabular” data
• Each row of a table is a line in the text file, with each column on the row

separated by commas
• This format is a common import and export format for spreadsheets and

databases

CSV form:
Name,Age
Charlie Brown,8
Snoopy,72
Patty,7

Charlie Brown
Snoopy
Patty

8
72

7

Working with CSVs
• Since CSVs are just text files, we can process them in the same way
• Might require additional post-processing/splitting using string functions

• split(line, delimiter) could be really useful here...

with open("data/superheroes.csv") as roster:
 for line in roster:
 print(strip(line))
Wonderwoman,Strength,5
Superman,Strength,13
Spiderman,Spidey things,9
Black Panther,Technology,4
Captain Marvel,Strength,4
Starfire,Strength,1
Cyborg,Technology,1
Batman,Justice,23
Robin,Justice,2
Ms. Marvel,Light,0
Jean Grey,Telekenesis,7
Ironman,Technology,9
Forge,Technology,1

• Read the following CSV file into lists:

Data Analysis with CSVs

accumulator variables
names = []
powers = []
movies = []

with open("data/superheroes.csv") as roster:
 for line in roster:
 line = split(trim(line), ',') # remove newline & split on commas
 names = names + [line[0]]
 powers = powers + [line[1]]
 movies = movies + [int(line[2])] # convert count to integer!
print(powers)
print(movies)
['Strength', 'Strength', 'Spidey things', 'Technology', 'Strength', 'Strength',
'Technology', 'Justice', 'Justice', 'Light', 'Telekenesis', 'Technology',
'Technology']
[5, 13, 9, 4, 4, 1, 1, 23, 2, 0, 7, 9, 1]

Wonderwoman,Strength,5
Superman,Strength,13
Spiderman,Spidey things,9
Black Panther,Technology,4
Captain Marvel,Strength,4
Starfire,Strength,1
Cyborg,Technology,1
Batman,Justice,23
Robin,Justice,2
Ms. Marvel,Light,0
Jean Grey,Telekenesis,7
Ironman,Technology,9
Forge,Technology,1

• Now let's count the appearance of different types of superpowers in our
dataset. We'll need the count_appearances(e,l) function we've
built previously.

• There are 4 superheroes with Strength power, 1 with Telekinesis, 1 with
Light, etc. etc.

Data Analysis with CSVs

unique_powers = list(set(powers))
count_list = []

for pwr in unique_powers:
 count_list += [count_appearances(pwr, powers)]

print(unique_powers)
print(count_list)

['Strength', 'Telekenesis', 'Light', 'Justice', 'Spidey things', 'Technology']
[4, 1, 1, 2, 1, 4]

A set to get us the unique list of superpowers!

Plotting

Plotting with matplotlib
• Suppose we want to a way to visualize our data (not just print it to the

terminal)
• A plot is a graphical technique for representing a data set, usually as a

graph showing the relationship between two or more variables
• We’ll be using Python’s matplotlib library to make plots/graphs
• The best way to learn how to plot different types of graphs is to read

the documentation and see examples

• Resources

• matplotlib examples: http://matplotlib.org/examples

• pyplot documentation: http://matplotlib.org/api/
pyplot_summary.html

• cool plots: https://matplotlib.org/gallery.html

http://matplotlib.org/examples
http://matplotlib.org/api/pyplot_summary.html
http://matplotlib.org/api/pyplot_summary.html
https://matplotlib.org/gallery.html

Plotting Basics: Plot function
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4])
plt.show()

If only one list is provided, Python assumes it is as
the points on the y axis (x values start at 0)

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show

Plotting Basics: Plot function
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [10, 14, 15, 18])
plt.show()

Equivalent to saying plot the points
 (1, 10), (2, 14), (3, 15), (4, 18)

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show

Plotting Basics: Plot function

a more advanced example where we customize the line plot
create a 4 by 4 figure
plt.figure(figsize=(4, 4))
plt.plot([0, 5, 10], [4, 12, 14])
plt.xticks([0, 5, 10], # x values of axis `ticks`
 ['x1', 'x2', 'x3']) # values to show for `ticks`

specify y-tick locations
plt.yticks([4, 12, 14])

• There are additional customizations we can add to our plot, such as
the size of the plot, the location and names of the X and Y ticks.

Plotting Basics: Plot function

axis labels and title
plt.xlabel("x axis")
plt.ylabel("y axis")
plt.title("Custom plot")
plt.show()

• There are additional customizations we can add to our plot, such as
the X and Y Labels, as well as the title.

• We can use these features to make interesting plots for data analysis:

Data Analysis with CSVs

x_values = [1970, 1980, 1990, 2000, 2010, 2020]
y_values = [1, 4, 0, 2, 3, 3]

create 4x4 figure
plt.figure(figsize=(4, 4))
plt.plot(x_values, y_values)
plt.xticks([1970, 1990, 2010], # x values of axis `ticks`
 ["1970s", "1990s", "2010s"]) # values to show for `ticks`

specify y-tick locations
plt.yticks([0, 2, 4])

axis labels and title
plt.xlabel("Decade")
plt.ylabel("Count")
plt.title("Superman Movies By Decade")
plt.show()

Plotting Basics: Bar function
import matplotlib.pyplot as plt
plt.bar([1, 2, 3, 4], [10, 14, 15, 18])
plt.show()

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show

• Now let's get back to our Superhero Data Analysis. We had two lists, one
of unique superpowers, and one of the counts of those superpowers:

Data Analysis with CSVs

print(unique_powers)
print(count_list)

['Strength', 'Telekenesis', 'Light', 'Justice', 'Spidey things',
'Technology']
[4, 1, 1, 2, 1, 4]

• Now let's get back to our Superhero Data Analysis. We had two lists, one
of unique superpowers, and one of the counts of those superpowers:

Data Analysis with CSVs

x_values = unique_powers
y_values = count_list

Create a new figure:
plt.figure()
Make it a bar chart
plt.bar(x_values, y_values)

rotate by 90 so labels are vertical and do not overlap
plt.xticks(x_values, rotation=90)
Set title and label axes
plt.title("Count of Superpowers")
plt.xlabel("Superpowers")
plt.ylabel("Count")
specify y axis range
plt.ylim([0, 10])

Show our chart:
plt.show()

• Now let's get back to our Superhero Data Analysis. We had two lists, one
of unique superpowers, and one of the counts of those superpowers:

Data Analysis with CSVs

x_values = unique_powers
y_values = count_list

Create a new figure:
plt.figure()
Make it a bar chart
plt.bar(x_values, y_values)

rotate by 90 so labels are vertical and do not overlap
plt.xticks(x_values, rotation=90)
Set title and label axes
plt.title("Count of Superpowers")
plt.xlabel("Superpowers")
plt.ylabel("Count")
specify y axis range
plt.ylim([0, 10])

Show our chart:
plt.show()

Next Time: Data Wrangling
• New time we'll learn about a new data structure that will help us

rearrange data even more, so we can produce more interesting plots!

