
CS134:
Scope

Announcements & Logistics
• Lab 04 Feedback is out! Can you interpret TestResults.txt?

• HW 5 will due tonight @ 10pm

• Lab 4 Part 2 due Wednesday/Thursday 10pm

• Midterm reminders:

• Review: Monday 3/11 from 7-9pm

• Exam Thurs 3/14 from 6-7:30pm OR 8-9:30pm
• Both exam and review are in Bronfman Auditorium

Do You Have Any Questions?

Last Time: Aliasing
• Attempts to change immutable objects (e.g., strings) produce clones

• Changes to clones do not affect originals

• No aliasing!

• We can create aliases of mutable objects

• Aliases refer to the same object, so changes to that object through any
alias affect value that other aliases observe

• For the list data type, += is sneakily replaced by .append()
• This mutates the list!

Goal was to demystify surprising behavior :
nothing in computer science is magic!

Today's Plan
• Scope: variables, functions, objects have limited accessibility/visibility.

• Understanding how this works helps us make decisions about where
to define variables/functions/objects

Goal is to again demystify surprising behavior :
nothing in computer science is magic!

a = 3
b = 4
def square(x):
 return x * x
c = square(a) + square(b)
c = pow(c, 0.5)
print(c)

What gets printed to the screen?

??

a = 3
b = 4
def square(x):
 return x * x
c = square(a) + square(b)
c = pow(c, 0.5)
print(c)

What gets printed to the screen?

5.0

a

b

c 3

4

5

a = 3
b = 4
def square(x):
 return x * x
c = square(a) + square(b)
c = pow(c, 0.5)
print(c)

What gets printed to the screen?

??
What if we make this change?

a
a a

a = 3
b = 4
def square(x):
 return x * x
c = square(a) + square(b)
c = pow(c, 0.5)
print(c)

What gets printed to the screen?

5.0
Same output!

a
a a

a = 3
b = 4
def square(x):
 return x * x
c = square(a) + square(b)
c = pow(c, 0.5)
print(c)

What gets printed to the screen?

??
What if we make this change?

a
a a

b

a = 3
b = 4
def square(x):
 return x * x
c = square(a) + square(b)
c = pow(c, 0.5)
print(c)

What gets printed to the screen?

5.291502622129181
Not the same output

a
a a

b

But also not an error!

Big Question: When we reuse
variable names, how does Python
know what a variable refers to?

Scope Diagram

• In Gladden & Carter "Mark Hopkins"
refers to Mark Hopkins '1824,
President of Williams College
1836-1872.

• In TCL, "Mark Hopkins" refers to
Professor Mark Hopkins, who started
working at Williams in 2022.

Gladden Carter TCL

Al & Ann Brady & Blake Casey & Cleo

Let's see it in python!
mar_hop = 111119 # Mark Hopkins ’1824 student ID number

def gladden():
 al = 223456 # Al’s student ID number
 ann = 287654 # Ann’s student ID number
 print(al, ann, mar_hop)

def carter():
 brady = 277777 # Brady’s student ID number
 blake = 288888 # Blake’s student ID number
 print(brady, blake, mar_hop)

def tcl():
 mar_hop = 998877 # Mark Hopkins ’2022 student ID number
 casey = 212233 # Casey’s student ID number
 cleo = 233444 # Cleo’s student ID number
 print(casey, cleo, mar_hop)

scope.py

if __name__ == '__main__':
 gladden() # prints?
 carter() # prints?
 tcl() # prints?

Let's see it in python!
mar_hop = 111119 # Mark Hopkins ’1824 student ID number

def gladden():
 al = 223456 # Al’s student ID number
 ann = 287654 # Ann’s student ID number
 print(al, ann, mar_hop)

def carter():
 brady = 277777 # Brady’s student ID number
 blake = 288888 # Blake’s student ID number
 print(brady, blake, mar_hop)

def tcl():
 mar_hop = 998877 # Mark Hopkins ’2022 student ID number
 casey = 212233 # Casey’s student ID number
 cleo = 233444 # Cleo’s student ID number
 print(casey, cleo, mar_hop)

scope.py

if __name__ == '__main__':
 gladden()
 carter()
 tcl()

223456 287654 111119
277777 288888 111119
212233 233444 998877

Let's see it in python!
mar_hop = 111119 # Mark Hopkins ’1824 student ID number

def gladden():
 al = 223456 # Al’s student ID number
 ann = 287654 # Ann’s student ID number
 print(al, ann, mar_hop)

def carter():
 brady = 277777 # Brady’s student ID number
 blake = 288888 # Blake’s student ID number
 print(brady, blake,, mar_hop)

def tcl():
 mar_hop = 998877 # Mark Hopkins ’2022 student ID number
 casey = 212233 # Casey’s student ID number
 cleo = 233444 # Cleo’s student ID number
 print(casey,, cleo, mar_hop)

scope.py

if __name__ == '__main__':
 gladden()
 carter()
 tcl()

print(ann)

What if we print(ann) in
dorm_b() or dorm_cs()?

NameError: name 'ann'
is not defined

print(ann)

Local Before Global
When python encounters a new term, like a variable
or function name, it first looks locally, before looking
higher up.

If python can't ever find the value assigned to the
term, you get a NameError.

triple(num)
A Small Example

Example: triple(num)

def triple(num):
 multiplier = 3
 return multiplier * num
answer = triple(5)
print(answer)

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
multiplier = 3
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
answer = triple(5)
multiplier = 3
print(answer)

in function
A B

C D

above/before
function

below/after
function def after function call

What will each of these print?

Example: triple(num)

def triple(num):
 multiplier = 3
 return multiplier * num
answer = triple(5)
print(answer)

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
multiplier = 3
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
answer = triple(5)
multiplier = 3
print(answer)

in function
A B

C D

above/before
function

below/after
function def after function call

What will each of these print?

15 15

15 NameError: name
'multiplier' is not defined

Function Frame Model

Scope: Function Frame Model
• By default, Python reads code one line at a time, starting from line 0

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Scope: Function Frame Model
• At first, when variables are assigned, their values are stored in the global

frame

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3

Scope: Function Frame Model
• Function definitions are treated like a single line of code

• A def statement does not call the function, it just defines it

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3
triple : multiplier * num

Scope: Function Frame Model
• Function definitions are treated like a single line of code

• A def statement does not call the function, it just defines it

• Effectively, it assigns the name of the function to a blueprint for
computing the function

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3
triple :

Scope: Function Frame Model
• To execute an assignment statement, python first computes the value of

the expression on the right-hand side

• In this case, the right-hand side calls the triple function

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3
triple :

Scope: Function Frame Model
• When a function is called, a new frame is created to record the variables

used by that function

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3
triple :

Call Frame parent

Scope: Function Frame Model
• First, the values of the argument variables are recorded in the call frame

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3
triple :

Call Frame parent

num : 5

Scope: Function Frame Model
• Then, the lines of the function are executed in order

• To look up the value of a variable, first python looks
in the call frame

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3
triple :

Call Frame parent

num : 5

????

Scope: Function Frame Model
• If the variable isn't found in the call frame, then

python looks in the parent frame

• (the frame we were in when the function was
called)

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3
triple :

Call Frame parent

num : 5

????

Scope: Function Frame Model
• Ultimately, a return value is computed for the function call

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3
triple :

Call Frame parent

num : 5

return value : 15

Scope: Function Frame Model
• The call frame is destroyed when the function returns

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3
triple :

Call Frame parent

num : 5

return value : 15

Scope: Function Frame Model
• ...and the return value of the function call is assigned to variable
answer in the global frame

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3
triple :
answer:

Call Frame parent

num : 5

return value : 15

Scope: Function Frame Model
• ...and the return value of the function call is assigned to variable
answer in the global frame

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3
triple :
answer: 15

Call Frame parent

num : 5

return value : 15

Scope: Function Frame Model
• Finally, the value of answer is looked up in the global frame

• And printed to the screen

multiplier = 3
def triple(num):
 return multiplier * num
answer = triple(5)
print(answer)

0
1

2
3

Global Frame

multiplier : 3
triple :

answer : 15

15

Function Frame Model:
Side-by-Side

Example

Side-by-Side Example
def triple(num):
 return multiplier * num
multiplier = 3
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
answer = triple(5)
multiplier = 3
print(answer)

C D

below/after
function def after function call

Let's use these principles to trace the
execution of these two programs

Side-By-Side

Side-by-Side
def triple(num):
 return multiplier * num
multiplier = 3
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
answer = triple(5)
multiplier = 3
print(answer)

C D

Global Frame Global Frame

triple :triple :

Side-by-Side
def triple(num):
 return multiplier * num
multiplier = 3
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
answer = triple(5)
multiplier = 3
print(answer)

C D

Global Frame

triple :

multiplier : 3

Global Frame

triple :

Side-by-Side
def triple(num):
 return multiplier * num
multiplier = 3
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
answer = triple(5)
multiplier = 3
print(answer)

C D

Global Frame

triple :

multiplier : 3

Global Frame

triple :

Call Frame parent

num : 5

Call Frame parent

num : 5

Side-by-Side
def triple(num):
 return multiplier * num
multiplier = 3
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
answer = triple(5)
multiplier = 3
print(answer)

C D

Global Frame

triple :

multiplier : 3

Global Frame

triple :

Call Frame parent

num : 5

Call Frame parent

num : 5

????

????

????

Side-by-Side
def triple(num):
 return multiplier * num
multiplier = 3
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
answer = triple(5)
multiplier = 3
print(answer)

C D

Global Frame

triple :

multiplier : 3

Global Frame

triple :

Call Frame parent

num : 5

Call Frame parent

num : 5

????

????

????

Side-by-Side
def triple(num):
 return multiplier * num
multiplier = 3
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
answer = triple(5)
multiplier = 3
print(answer)

C D

Global Frame

triple :

multiplier : 3

Global Frame

triple :

Call Frame parent

num : 5

Call Frame parent

num : 5

????

????

return value : 15

Side-by-Side
def triple(num):
 return multiplier * num
multiplier = 3
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
answer = triple(5)
multiplier = 3
print(answer)

C D

Global Frame

triple :

multiplier : 3

Global Frame

triple :

Call Frame parent

num : 5

Call Frame parent

num : 5

????

????

return value : 15

Side-by-Side
def triple(num):
 return multiplier * num
multiplier = 3
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
answer = triple(5)
multiplier = 3
print(answer)

C D

Global Frame

triple :

multiplier : 3
answer : 15

Global Frame

triple :

Call Frame parent

num : 5

????

????

return value : 15

Side-by-Side
def triple(num):
 return multiplier * num
multiplier = 3
answer = triple(5)
print(answer)

def triple(num):
 return multiplier * num
answer = triple(5)
multiplier = 3
print(answer)

C D

Global Frame

triple :

multiplier : 3
answer : 15

Global Frame

triple :

Call Frame parent

num : 5

????

????

15

More Examples

What gets printed to the screen?

??
multiplier = 3
def mystery(num):
 return multiplier * num
multiplier = 2
answer = mystery(5)
print(answer)

What gets printed to the screen?

10
multiplier = 3
def mystery(num):
 return multiplier * num
multiplier = 2
answer = mystery(5)
print(answer)

• multiplier is recorded as 3 on the Global Frame

• Then the mystery() blueprint is recorded on the Global Frame

• Then multiplier is re-assigned the value 2 on the Global Frame

• mystery(5) evaluates to 10, since multiplier is 2 in the global frame
and num is 5 in the call frame

list = 2468
list_str = list("whodoweappreciate")
print(list, list_str)

What gets printed to the screen?

??

list = 2468
list_str = list("whodoweappreciate")
print(list, list_str)

What gets printed to the screen?

TypeError:
'list'

object is
not callable

• list is a python keyword, in the Global Frame

• list = ... reassigns the value of list in the Global Frame

• It's no longer the keyword, it's now an integer object

• So you can't call list(..) as the built-in list-casting function!

• ...This is why we should never use python keywords as variable names!!!

Helpful External Tool for Learning
How python Executes Code:

• https://pythontutor.com/cp/composingprograms.html

https://pythontutor.com/cp/composingprograms.html

The end!

