Approximate Set Cover

Set Cover

• Set Cover (Optimization version). Given a set U of n elements, a collection \mathcal{S} of subsets of U, find the minimum number of subsets from \mathscr{S} whose union covers U.

$$U = \{ 1, 2, 3, 4$$

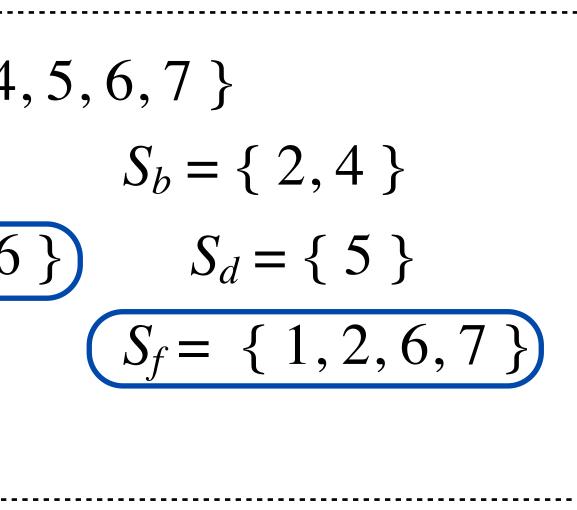
$$S_a = \{ 3, 7 \}$$

$$S_c = \{ 3, 4, 5, 6$$

$$S_e = \{ 1 \}$$

$$k = 2$$

a set cover instance



Greedy Algorithm

- Greedily pick sets that maximize coverage until done
- Greedy $Cover(\mathcal{U}, \mathcal{S})$:
 - Initially all elements of $\mathcal U$ are marked uncovered
 - $C \leftarrow \emptyset$ (Initialize cover)
 - While there is an uncovered element in ${\mathscr U}$
 - Pick the set S_m from $S \setminus C$ that maximizes the number of uncovered elements
 - $C \leftarrow C \cup \{S_m\}$
 - Mark elements of S_m as covered

• **Claim**. Greedy set cover is a ln *n*-approximation, that is, greedy uses at most $k(\ln n + 1)$ sets where k is the size of the optimal set cover.

Main observations behind proof:

- If there exists k subsets whose union covers all n elements, ulletthen there exists a subset that covers 1/k fraction of elements
- Greedy always picks subsets that maximize remaining uncovered elements
- In each iteration, greedy's choice must cover at least 1/klacksquarefraction of the remaining elements
- Such a subset must always exist since the remaining elements can also be covered by at most k subsets

- **Claim.** Greedy set cover is a $(\ln n+1)$ -approximation—greedy uses at most $k(\ln n + 1)$ sets where k is the size of the optimal set cover.
- Proof.
- Let E_t be the set of elements still uncovered after *t*th iteration.
- The optimal solution covers E_t with no more than k sets
- Greedy always picks the subset that covers most of E_t in step t+1
- Selected subset must cover at least $|E_t|/k$ elements of E_t
- Thus $|E_{t+1}| \le |E_t| (1 1/k)$ and as $E_0 = n$, inductively we have $|E_t| \le n(1 1/k)^t$
- When $|E_t| < 1$, we are done

- **Claim.** Greedy set cover is a $(\ln n + 1)$ -approximation—greedy • uses at most $k(\ln n + 1)$ sets where k is the size of the optimal set cover.
- **Proof.** (Cont.) •
- $|E_t| \le n(1 1/k)^t$
- When $|E_t| \leq 1$, we are done

• Setting $t = k \ln n$, we get $|E_t| = n \left(1 - \frac{1}{k}\right)$

- Thus, greedy finishes in $k \ln n + 1$ steps where k is the optimalulletset cover size, so it uses at most $k \ln n + 1$ sets.
- We can tighten the analysis by considering when there are at most k uncovered elements

$$\left(\frac{1}{k}\right)^{k\ln n} \le n \cdot \frac{1}{n} = 1$$

$$\left(1 - \frac{1}{x}\right)^x \le \frac{1}{e} \text{ for } x > 0$$

- **Claim**. If the optimal set cover has size k then the greedy set cover has size at most $k(1 + \ln(n/k))$.
- **Proof**. (Cont.)
- $|E_t| \leq n(1-1/k)^t$
- When $|E_t| \leq k$, we are done

• Setting
$$t = k \ln(n/k)$$
, we get $|E_t| = n \left(1 - \frac{1}{k}\right)^{k \ln(n/k)} \le n \cdot k/n = k$

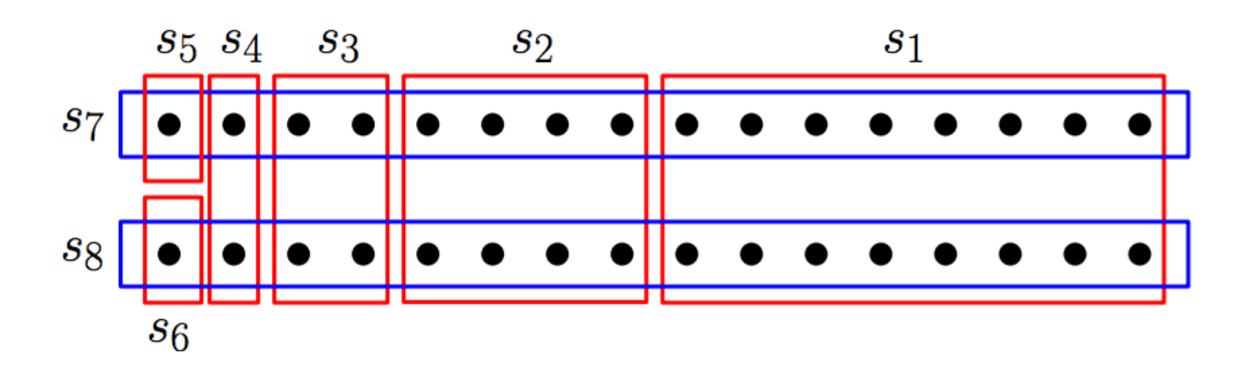
• Greedy needs at most k more sets to cover remaining kelements and thus uses at most $k + k \ln(n/k)$ sets in total.

Special Case

- We can do slightly better for special input
- **Claim**. If the maximum size of any subset in \mathcal{S} is B then the greedy algorithm is $(\ln B + 1)$ -approximation
- **Proof**.
- If each subset has almost B elements and the optimal set cover has k subsets then $k \ge n/B$
- Substituting $n/k \leq B$ shows that greedy is $(\ln B + 1)$ approximation

Tight Approximation

- Is the greedy approximation tight?
- Essentially, yes ullet
- Consider the following example with $n = 2^5$ elements
- s_1, s_7, s_8 each have n/2 elements but greedy can pick the worst: *s*₁
- Example can be extended to any $n = 2^k$ where optimal cost is 2 and greedy cost is $O(\ln n)$



Approximating Vertex Cover

- We know that vertex cover reduces to set cover
- $\mathcal{U} = E$ and $\mathcal{S} = \{S_v \mid v \in V\}$ where $S_v = \{e \in E \mid e \text{ incident to } v\}$
- Thus the greedy approximation algorithm for set cover also gives an approximation algorithm for vertex cover
- Greedy picks vertices that cover maximum number of edges (i.e., vertices with max degrees w.r.t. uncovered edges)
- Greedy vertex cover is thus a $(\ln \Delta + 1)$ approximation where Δ is maximum degree of any vertex
- The seemingly stupider algorithm on assignment 9 is better than greedy—2-approximation is best known
- Finding a (2ε) -approximation of VC is a big open problem!

Approximate Weighted Set Cover

Weighted Set Cover

- In the weighted-version of the set cover problem, each subset $S_i \in \mathcal{S}$ has a weight w_i associated with it
- The goal is to find the a collection of subsets $C = \{S_1, ..., S_k\}$ such that they cover \mathcal{U} and $\sum w(S_i)$ is

minimized

- We extend the greedy algorithm to the weighted case
- What should we be greedy about?

 $S_i \in C$

Weighted Case: Greedy

- In the weighted-version of the set cover problem, each subset $S_i \in \mathcal{S}$ has a weight w_i associated with it
- Each potential set that can be added to the solution has some "benefit" (elements it covers) and some "cost" (its weight)
- We can be greedy in terms of the cost/benefit or the "amortized cost" of choosing set ${\cal S}_i$
- Greedy algorithm.
 - Begin with an empty cover and continue until all elements covered
 - In each iteration choose the set S_i that minimizes amortized cost w_i/e , where e is the # of new elements covered by S_i

Weighted Case: Greedy

- How good is the greedy strategy for the weighted case?
- **Claim.** Greedy is a $O(\log n)$ -approximation for weighted set cover.
- We prove this by proving a **different claim**: for any subset $S_i \in \mathcal{S}$, the greedy algorithm covers the elements of S_i with a cost no greater than $O(\log n)$ times w_i (the cost of choosing S_i itself)
- Thus, no matter what collection of subsets $O = \{S_1, ..., S_k\}$ the optimal solution picks, the greedy algorithm covers them at cost $O(\log n)$ times $\sum w(S_j)$ (the cost of the optimal solution) $S_i \in O$
- This would complete the proof that greedy is a $O(\log n)$ approximation

Weighted Greedy: Analysis

- **Claim**. For any subset $S_i \in \mathcal{S}$, the greedy algorithm covers the elements of S_i with a cost no greater than $O(\log n)$ times W_i (the cost of choosing S_i itself)
- **Proof**. Order the elements of $S_i = \{a_1, a_2, \dots, a_d\}$ in the order in which they were covered by the greedy algorithm (if more than one are covered at the same time, break ties arbitrarily)
- Consider the time the element a_d is covered: the available sets to cover a_d include S_i itself
- Covering a_d with S_i would incur an amortized cost of w_i or less (if a_d is the only new element covered by S_i or less otherwise)
- Greedy picks the set with least amortized cost so its cost is at most W_i to cover a_d

Weighted Greedy: Analysis

- **Claim**. For any subset $S_i \in \mathcal{S}$, the greedy algorithm covers the elements of S_i with a cost no greater than $O(\log n)$ times W_i (the cost of choosing S_i itself)
- **Proof**.

Now look at when a_{d-1} is covered, at this time, it is possible to select S_i and cover both a_{d-1} and a_d incurring an amortized cost of $w_i/2$ or less (if more elements are covered)

- Greedy picks the set with least amortized cost so its cost to • cover a_{d-1} is at most $w_i/2$
- Similarly a_{d-2} is covered at amortized cost at most $w_i/3$. Each element a_i incurs an amortized cost at most $w_i/(d-j+1)$ up until a_1 which is covered at amortized cost w_i/d

Weighted Set Cover

- **Claim**. For any subset $S_i \in \mathcal{S}$, the greedy algorithm covers the elements of S_i with a cost no greater than $O(\log n)$ times w_i (the cost of choosing S_i itself)
- **Proof**. \bullet
- Each element a_i incurs an amortized cost at up until a_1 which is covered at amortized cos
- Thus the greedy algorithm covers all elements of S_i at an amortized cost of

$$w_i\left(\sum_{j=1}^d \frac{1}{n-j+1}\right) = w_i \cdot O(\log d) = w_i$$

This analysis can be shown to be tight as well

most
$$w_i/(d-j+1)$$

st w_i/d

 $\cdot O(\log n)$

Wrapping Up Approximations

- Set Cover. Can we do better than $O(\log n)$?
- [Raz & Safra 1997]. There exists a constant c > 0, there is no polynomial-time $c \ln n$ -approximation algorithm, unless P = NP.
- Approximation schemes.
 - Let X be a minimization problem, an approximation scheme for X is a family of $(1 + \varepsilon)$ -approximation algorithms for $0 < \varepsilon < 1$
 - If the running time is polynomial in n (not in ε) we call it a polynomial-time approximation scheme (PTAS)
 - If the running time is polynomial in both n and ε , we call it a fully polynomial-time approximation scheme (FPTAS)
 - FPTAS for NP hard problems such Knapsack and Subset-Sum

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (<u>https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf</u>)
 - Jeff Erickson's Algorithms Book (<u>http://jeffe.cs.illinois.edu/teaching/</u> <u>algorithms/book/Algorithms-JeffE.pdf</u>)