
Approximate Set Cover

Set Cover
• Set Cover (Optimization version). Given a set of

elements, a collection of subsets of , find the minimum
number of subsets from whose union covers .

U n
𝒮 U

𝒮 U

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 } Sd = { 5 } 
Se = { 1 } Sf = { 1, 2, 6, 7 }
k = 2

a set cover instance

Greedy Algorithm
• Greedily pick sets that maximize coverage until done  

• Greedy Cover():

• Initially all elements of are marked uncovered

• (Initialize cover)

• While there is an uncovered element in

• Pick the set from that maximizes the
number of uncovered elements

•

• Mark elements of as covered

𝒰, 𝒮

𝒰

C ← ∅

𝒰

Sm 𝒮∖C

C ← C ∪ {Sm}

Sm

Analyzing Greedy
• Claim. Greedy set cover is a -approximation, that is,

greedy uses at most sets where is the size of
the optimal set cover.

Main observations behind proof:

• If there exists subsets whose union covers all elements,
then there exists a subset that covers fraction of elements

• Greedy always picks subsets that maximize remaining
uncovered elements

• In each iteration, greedy’s choice must cover at least
fraction of the remaining elements

• Such a subset must always exist since the remaining elements
can also be covered by at most subsets

ln n
k(ln n + 1) k

k n
1/k

1/k

k

• Claim. Greedy set cover is a (+1)-approximation—greedy
uses at most sets where is the size of the
optimal set cover.

• Proof.
• Let be the set of elements still uncovered after th iteration.

• The optimal solution covers with no more than sets

• Greedy always picks the subset that covers most of in step

• Selected subset must cover at least elements of

• Thus and as , inductively
we have

• When , we are done

ln n
k(ln n + 1) k

Et t
Et k

Et
t + 1

|Et | /k Et

|Et+1 | ≤ |Et |(1 − 1/k) E0 = n
|Et | ≤ n(1 − 1/k)t

|Et | < 1

Analyzing Greedy

• Claim. Greedy set cover is a (+1)-approximation—greedy
uses at most sets where is the size of the optimal
set cover.

• Proof. (Cont.)

•

• When , we are done

• Setting , we get

• Thus, greedy finishes in steps where is the optimal-
set cover size, so it uses at most sets.

• We can tighten the analysis by considering when there are at
most uncovered elements

ln n
k(ln n + 1) k

|Et | ≤ n(1 − 1/k)t

|Et | ≤ 1

t = k ln n |Et | = n (1 −
1
k)

k ln n

≤ n ⋅
1
n

= 1

k ln n + 1 k
k ln n + 1

k

 for (1 −
1
x)

x

≤
1
e

x > 0

Analyzing Greedy

• Claim. If the optimal set cover has size then the greedy set
cover has size at most .

• Proof. (Cont.)

•

• When , we are done

• Setting , we get  

• Greedy needs at most more sets to cover remaining
elements and thus uses at most sets in total.

k
k(1 + ln(n/k))

|Et | ≤ n(1 − 1/k)t

|Et | ≤ k

t = k ln(n/k) |Et | = n (1 −
1
k)

k ln(n/k)

≤ n ⋅ k/n = k

k k
k + k ln(n/k)

Analyzing Greedy

Special Case
• We can do slightly better for special input

• Claim. If the maximum size of any subset in is then the
greedy algorithm is -approximation

• Proof.

• If each subset has almost elements and the optimal set
cover has subsets then

• Substituting shows that greedy is
approximation

𝒮 B
(ln B + 1)

B
k k ≥ n/B

n/k ≤ B (ln B + 1)

Tight Approximation
• Is the greedy approximation tight?

• Essentially, yes

• Consider the following example with elements

• each have elements but greedy can pick the
worst:

• Example can be extended to any where optimal cost
is and greedy cost is

n = 25

s1, s7, s8 n/2
s1

n = 2k

2 O(ln n)

• We know that vertex cover reduces to set cover

• and = where

• Thus the greedy approximation algorithm for set cover also
gives an approximation algorithm for vertex cover

• Greedy picks vertices that cover maximum number of edges
(i.e., vertices with max degrees w.r.t. uncovered edges)

• Greedy vertex cover is thus a (+1) approximation where
 is maximum degree of any vertex

• The seemingly stupider algorithm on assignment 9 is better
than greedy— -approximation is best known

• Finding a -approximation of VC is a big open problem!

𝒰 = E 𝒮 {Sv |v ∈ V}
Sv = {e ∈ E | e incident to v}

ln Δ
Δ

2
(2 − ε)

Approximating Vertex Cover

Approximate Weighted
Set Cover

• In the weighted-version of the set cover problem, each subset
 has a weight associated with it

• The goal is to find the a collection of subsets
 such that they cover and is

minimized

• We extend the greedy algorithm to the weighted case

• What should we be greedy about?

Si ∈ 𝒮 wi

C = {S1, …, Sk} 𝒰 ∑
Si∈C

w(Si)

Weighted Set Cover

• In the weighted-version of the set cover problem, each subset
 has a weight associated with it

• Each potential set that can be added to the solution has some
“benefit” (elements it covers) and some “cost” (its weight)

• We can be greedy in terms of the cost/benefit or the “amortized
cost” of choosing set

• Greedy algorithm.

• Begin with an empty cover and continue until all elements
covered

• In each iteration choose the set that minimizes amortized
cost , where is the # of new elements covered by

Si ∈ 𝒮 wi

Si

Si
wi/e e Si

Weighted Case: Greedy

• How good is the greedy strategy for the weighted case?

• Claim. Greedy is a -approximation for weighted set
cover.

• We prove this by proving a different claim:  
for any subset , the greedy algorithm covers the
elements of with a cost no greater than times
(the cost of choosing itself)

• Thus, no matter what collection of subsets the
optimal solution picks, the greedy algorithm covers them at
cost times (the cost of the optimal solution)

• This would complete the proof that greedy is a -
approximation

O(log n)

Si ∈ 𝒮
Si O(log n) wi

Si

O = {S1, …, Sk}

O(log n) ∑
Sj∈O

w(Sj)

O(log n)

Weighted Case: Greedy

• Claim. For any subset , the greedy algorithm covers
the elements of with a cost no greater than times

 (the cost of choosing itself)

• Proof. Order the elements of in the
order in which they were covered by the greedy algorithm (if
more than one are covered at the same time, break ties
arbitrarily)

• Consider the time the element is covered: the available sets
to cover include itself

• Covering with would incur an amortized cost of or less
(if is the only new element covered by or less otherwise)

• Greedy picks the set with least amortized cost so its cost is at
most to cover

Si ∈ 𝒮
Si O(log n)

wi Si

Si = {a1, a2, …, ad}

ad
ad Si

ad Si wi
ad Si

wi ad

Weighted Greedy: Analysis

• Claim. For any subset , the greedy algorithm covers
the elements of with a cost no greater than times

 (the cost of choosing itself)

• Proof.  
Now look at when is covered, at this time, it is possible to
select and cover both and incurring an amortized
cost of or less (if more elements are covered)

• Greedy picks the set with least amortized cost so its cost to
cover is at most

• Similarly is covered at amortized cost at most . Each
element incurs an amortized cost at most up
until which is covered at amortized cost

Si ∈ 𝒮
Si O(log n)

wi Si

ad−1
Si ad−1 ad
wi/2

ad−1 wi/2

ad−2 wi/3
aj wi/(d − j + 1)

a1 wi/d

Weighted Greedy: Analysis

• Claim. For any subset , the greedy algorithm covers the
elements of with a cost no greater than times (the
cost of choosing itself)

• Proof.

• Each element incurs an amortized cost at most
up until which is covered at amortized cost

• Thus the greedy algorithm covers all elements of at an
amortized cost of

• This analysis can be shown to be tight as well

Si ∈ 𝒮
Si O(log n) wi

Si

aj wi/(d − j + 1)
a1 wi/d

Si

wi

d

∑
j=1

1
n − j + 1

= wi ⋅ O(log d) = wi ⋅ O(log n)

Weighted Set Cover

• Set Cover. Can we do better than

• [Raz & Safra 1997]. There exists a constant , there is no
polynomial-time -approximation algorithm, unless .’

• Approximation schemes.

• Let be a minimization problem, an approximation scheme
for is a family of -approximation algorithms for

• If the running time is polynomial in (not in we call it a
polynomial-time approximation scheme (PTAS)

• If the running time is polynomial in both and , we call it a
fully polynomial-time approximation scheme (FPTAS)

• FPTAS for NP hard problems such Knapsack and Subset-Sum

O(log n)?

c > 0
c ln n 𝖯 = 𝖭𝖯

X
X (1 + ε)

0 < ε < 1

n ε)

n ε

Wrapping Up Approximations

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

