Approximate Set Cover

Set Cover

« Set Cover (Optimization version). Given a set U of n
elements, a collection & of subsets of U, find the minimum
number of subsets from & whose union covers U.

U={1,2.3.4.5.6.71
S5a=13,7} Sp=12,4}

(5.={3.4.5.6}) S;={5)
- S.={1} S;={1,2,6,7))

a set cover instance

Greedy Algorithm

* (Greedily pick sets that maximize coverage until done

e Greedy Cover(%, &)
. Initially all elements of % are marked uncovered
« C <« @ (Initialize cover)
« While there is an uncovered element in %

. Pick the set §,, from &'\ C that maximizes the
number of uncovered elements

« C<CUl{s,}

« Mark elements of S, as covered

Analyzing Greedy

« Claim. Greedy set cover is a In n-approximation, that is,
greedy uses at most k(Inn + 1) sets where k is the size of
the optimal set cover.

Main observations behind proot:

« If there exists k subsets whose union covers all n elements,
then there exists a subset that covers 1/k fraction of elements

 (Greedy always picks subsets that maximize remaining
uncovered elements

. In each iteration, greedy’s choice must cover at least 1/k
fraction of the remaining elements

 Such a subset must always exist since the remaining elements
can also be covered by at most k subsets

Analyzing Greedy

« Claim. Greedy set cover is a (In n+1)-approximation—greedy
uses at most k(Inn + 1) sets where k is the size of the
optimal set cover.

* Proof.
« Let £, be the set of elements still uncovered after tth iteration.

« The optimal solution covers E, with no more than k sets

« Greedy always picks the subset that covers most of £, in step
t+ 1

« Selected subset must cover at least | E, | /k elements of E,

. Thus |E,_ | £ |E,] (1 — l/k) and as E, = n, inductively
we have | E,| < n(1 — 1/k)’

« When |E,| < 1, we are done

Analyzing Greedy

Claim. Greedy set cover is a (In n+1)-approximation—greedy
uses at most k(Inn + 1) sets where k is the size of the optimal
set cover.

Proof. (Cont.)
. |E,| <n(l-1/k)

« When |E,| £ 1, we are done

1 klnn 1
Settingtzklnn,vveget\EAzn(l—;) <n-—=1
n

« Thus, greedy finishes in kInn + 1 steps where k is the optimal-

set cover size, so it uses at most kInn + 1 sets. (1 >x i

l——) <—forx>0

 We can tighten the analysis by considering when there are at X e

most kK uncovered elements

Analyzing Greedy

« Claim. If the optimal set cover has size k then the greedy set
cover has size at most k(1 + In(n/k)).

 Proof. (Cont.)
. |E,| <n(l—=1/k)
« When |E,| < k, we are done

1 kIn(n/k)
Setting t = kIn(n/k), we get |E,| = n (1 _ Z)

<n-kin=%k

« Greedy needs at most k more sets to cover remaining k
elements and thus uses at most k + kIn(n/k) sets in total.

Special Case

 We can do slightly better for special input

« Claim. If the maximum size of any subset in & is B then the
greedy algorithm is (In B + 1)-approximation

* Proof.

« |f each subset has almost B elements and the optimal set
cover has k subsets then kK > n/B

 Substituting n/k < B shows that greedyis (In B + 1)
approximation

Tight Approximation

* |sthe greedy approximation tight?
 Essentially, yes
o (Consider the following example with n = 2> elements

. §y,87, 8¢ each have n/2 elements but greedy can pick the
WOTrSt: Sl

« Example can be extended to any n = 2% where optimal cost
is 2 and greedy cost is O(In n)

S5 84 53 S2 S1

37_&...............

sSI:EZ;oo;oooo;oooooooo]

Approximating Vertex Cover

e \We know that vertex cover reduces to set cover

e« U =FEandd =1{S,|v &€ V} where
S, = {e € E | eincidentto v}

* Thus the greedy approximation algorithm for set cover also
gives an approximation algorithm for vertex cover

* (Greedy picks vertices that cover maximum number of edges
(i.e., vertices with max degrees w.r.t. uncovered edges)

« Greedy vertex cover is thus a (In A+1) approximation where
A is maximum degree of any vertex

* [he seemingly stupider algorithm on assignment 9 is better
than greedy—2-approximation is best known

« Finding a (2 — &)-approximation of VC is a big open problem!

Approximate VVeighted
Set Cover

Weighted Set Cover

* |n the weighted-version of the set cover problem, each subset
S. € & has a weight w; associated with it

 The goal is to find the a collection of subsets
C={S,,...,3;,} such that they cover % and Z w(S;) is
S.eC
minimized
* We extend the greedy algorithm to the weighted case

* \What should we be greedy about?

Weighted Case: Greedy

* |n the weighted-version of the set cover problem, each subset
S, € & has a weight w; associated with it

 Each potential set that can be added to the solution has some
“benefit” (elements it covers) and some “cost” (its weight)

 We can be greedy in terms of the cost/benefit or the “amortized
cost” of choosing set §;

e (Greedy algorithm.

 Begin with an empty cover and continue until all elements
covered

« In each iteration choose the set S; that minimizes amortized
cost w./e, where e is the # of new elements covered by ;

Weighted Case: Greedy

ow good is the greedy strategy for the weighted case”

« Claim. Greedy is a O(log n)-approximation for weighted set
cover.

 We prove this by proving a different claim:

for any subset §; € &, the greedy algorithm covers the

e

(t

ements of S, with a cost no greater than O(log n) times w;

e [hus, no matter w

optimal solution pl

cost O(log n) times Z W(Sj) (the cost of the optimal solution)

ne cost of choosing ; itself)

nat collection of subsets O = {5y, ..., 3, } the

cks, the greedy algorithm covers them at

S.€0

« This would complete the proof that greedy is a O(log n)-
approximation

Weighted Greedy: Analysis

o« Claim.

For any subset $; € &, the greedy algorithm covers

the elements of §; with a cost no greater than O(log n) times
w; (the cost of choosing 3; itself)

 Proof.
order |
more i
arbitra

Order the elements of §; = {ay, a,, ..., a,} in the

n which they were covered by the greedy algorithm (if
nan one are covered at the same time, break ties

ily)

« Consider the time the element a; is covered: the available sets
to cover a, include S; itself

e Coveri

ng a, with §; would incur an amortized cost of w; or less

(if a, is the only new element covered by S; or less otherwise)

 (Greedy picks the set with least amortized cost so its cost is at
most w; to cover a,

Weighted Greedy: Analysis

 Claim. For any subset S; € &, the greedy algorithm covers
the elements of S, with a cost no greater than O(log n) times
w; (the cost of choosing 3; itself)

* Proof.
Now look at when a,_; Is covered, at this time, it is possible to

select $; and cover both a;_; and a; incurring an amortized
cost of w;/2 or less (if more elements are covered)

 (Greedy picks the set with least amortized cost so its cost to
cover d;_ is at most w;/2

o Similarly a,_, is covered at amortized cost at most w,/3. Each

element a; incurs an amortized cost at mostw;/(d —j + 1) up

until a; which is covered at amortized cost w,/d

Weighted Set Cover

 Claim. For any subset §; € &, the greedy algorithm covers the
elements of S; with a cost no greater than O(log n) times w; (the
cost of choosing J; itself)

 Proof.

. Each element a; incurs an amortized cost at most w/(d—j+ 1)

up until a; which is covered at amortized cost w./d

« Thus the greedy algorithm covers all elements of §; at an
amortized cost of

d

|
w; Z : =w, - O(logd) = w, - O(logn)
n—j+1

j=1

 This analysis can be shown to be tight as well

Wrapping Up Approximations

 Set Cover. Can we do better than O(logn)?

« [Raz & Safra 1997]. There exists a constant ¢ > 0, there is no
polynomial-time ¢ In n-approximation algorithm, unless P = NP’

 Approximation schemes.

« Let X be a minimization problem, an approximation scheme
for X is a family of (1 + &)-approximation algorithms for
O<exl

o If the running time is polynomial in n (not in €) we call it a
polynomial-time approximation scheme (PTAS)

o |f the running time is polynomial in both n and &, we call it a
fully polynomial-time approximation scheme (FPTAS)

« FPTAS for NP hard problems such Knapsack and Subset-Sum

Acknowledgments

e Some of the material in these slides are taken from

« Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsl. pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE . pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

