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Set Cover
• Set Cover (Optimization version). Given a set  of  

elements, a collection  of subsets of , find the minimum 
number of subsets from  whose union covers . 

U n
𝒮 U

𝒮 U

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 }      Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }      Sd = { 5 } 
Se = { 1 }      Sf =  { 1, 2, 6, 7 }
k = 2

a set cover instance



Greedy Algorithm
• Greedily pick sets that maximize coverage until done  

• Greedy Cover( ):  

• Initially all elements of  are marked uncovered 

•   (Initialize cover) 

• While there is an uncovered element in  

• Pick the set  from  that maximizes the 
number of uncovered elements 

•   

• Mark elements of  as covered

𝒰, 𝒮

𝒰

C ← ∅

𝒰

Sm 𝒮∖C

C ← C ∪ {Sm}

Sm



Analyzing Greedy
• Claim. Greedy set cover is a -approximation, that is, 

greedy uses at most  sets where  is the size of 
the optimal set cover. 

Main observations behind proof: 

• If there exists  subsets whose union covers all  elements, 
then there exists a subset that covers  fraction of elements 

• Greedy always picks subsets that maximize remaining 
uncovered elements 

• In each iteration, greedy’s choice must cover at least  
fraction of the remaining elements 

• Such a subset must always exist since the remaining elements 
can also be covered by at most  subsets
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• Claim. Greedy set cover is a ( +1)-approximation—greedy 
uses at most  sets where  is the size of the 
optimal set cover. 

• Proof. 
• Let  be the set of elements still uncovered after th iteration. 

• The optimal solution covers  with no more than  sets 

• Greedy always picks the subset that covers most of  in step 
 

• Selected subset must cover at least  elements of   

• Thus  and as , inductively 
we have   

• When , we are done 
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• Claim. Greedy set cover is a ( +1)-approximation—greedy 
uses at most  sets where  is the size of the optimal 
set cover. 

• Proof. (Cont.)

•   

• When , we are done  

• Setting , we get   

• Thus, greedy finishes in  steps where  is the optimal-
set cover size, so it uses at most  sets. 

• We can tighten the analysis by considering when there are at 
most  uncovered elements

ln n
k(ln n + 1) k

|Et | ≤ n(1 − 1/k)t

|Et | ≤ 1

t = k ln n |Et | = n (1 −
1
k )

k ln n

≤ n ⋅
1
n

= 1

k ln n + 1 k
k ln n + 1

k

 for (1 −
1
x )

x

≤
1
e

x > 0

Analyzing Greedy



• Claim. If the optimal set cover has size  then the greedy set 
cover has size at most .  

• Proof. (Cont.) 

•   

• When , we are done  

• Setting , we get  

                                                            

• Greedy needs at most  more sets to cover remaining  
elements and thus uses at most  sets in total.
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Special Case
• We can do slightly better for special input 

• Claim. If the maximum size of any subset in  is  then the 
greedy algorithm is -approximation 

• Proof. 

• If each subset has almost  elements and the optimal set 
cover has  subsets then   

• Substituting  shows that greedy is  
approximation 
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Tight Approximation
• Is the greedy approximation tight? 

• Essentially, yes  

• Consider the following example with  elements 

•  each have  elements but greedy can pick the 
worst:  

• Example can be extended to any  where optimal cost 
is  and greedy cost is   

n = 25

s1, s7, s8 n/2
s1

n = 2k

2 O(ln n)



• We know that vertex cover reduces to set cover 

•  and  =  where 
 

• Thus the greedy approximation algorithm for set cover also 
gives an approximation algorithm for vertex cover 

• Greedy picks vertices that cover maximum number of edges 
(i.e., vertices with max degrees w.r.t. uncovered edges) 

• Greedy vertex cover is thus a ( +1) approximation where 
 is maximum degree of any vertex  

• The seemingly stupider algorithm on assignment 9 is better 
than greedy— -approximation is best known 

• Finding a -approximation of VC is a big open problem!

𝒰 = E 𝒮 {Sv |v ∈ V}
Sv = {e ∈ E | e incident to v}
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Approximating Vertex Cover



Approximate Weighted
Set Cover



• In the weighted-version of the set cover problem, each subset 
 has a weight  associated with it 

• The goal is to find the a collection of subsets 
 such that they cover  and  is 

minimized 

• We extend the greedy algorithm to the weighted case 

• What should we be greedy about?

Si ∈ 𝒮 wi

C = {S1, …, Sk} 𝒰 ∑
Si∈C

w(Si)

Weighted Set Cover



• In the weighted-version of the set cover problem, each subset 
 has a weight  associated with it 

• Each potential set that can be added to the solution has some 
“benefit” (elements it covers) and some “cost” (its weight) 

• We can be greedy in terms of the cost/benefit or the “amortized 
cost” of choosing set  

• Greedy algorithm.   

• Begin with an empty cover and continue until all elements 
covered 

• In each iteration choose the set  that minimizes amortized 
cost , where  is the # of new elements covered by  

Si ∈ 𝒮 wi

Si

Si
wi/e e Si

Weighted Case: Greedy



• How good is the greedy strategy for the weighted case? 

• Claim.  Greedy is a -approximation for weighted set 
cover. 

• We prove this by proving a different claim:  
for any subset , the greedy algorithm covers the 
elements of  with a cost no greater than  times  
(the cost of choosing  itself) 

• Thus, no matter what collection of subsets  the 
optimal solution picks, the greedy algorithm covers them at 
cost  times  (the cost of the optimal solution) 

• This would complete the proof that greedy is a -
approximation

O(log n)

Si ∈ 𝒮
Si O(log n) wi
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O = {S1, …, Sk}
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w(Sj)

O(log n)

Weighted Case: Greedy



• Claim.  For any subset , the greedy algorithm covers 
the elements of  with a cost no greater than  times 

 (the cost of choosing  itself) 

• Proof.  Order the elements of  in the 
order in which they were covered by the greedy algorithm (if 
more than one are covered at the same time, break ties 
arbitrarily) 

• Consider the time the element  is covered: the available sets 
to cover  include  itself  

• Covering  with  would incur an amortized cost of  or less 
(if  is the only new element covered by  or less otherwise) 

• Greedy picks the set with least amortized cost so its cost is at 
most  to cover 

Si ∈ 𝒮
Si O(log n)

wi Si

Si = {a1, a2, …, ad}

ad
ad Si

ad Si wi
ad Si

wi ad

Weighted Greedy: Analysis



• Claim.  For any subset , the greedy algorithm covers 
the elements of  with a cost no greater than  times 

 (the cost of choosing  itself) 

• Proof.   
Now look at when  is covered, at this time, it is possible to 
select  and cover both  and  incurring an amortized 
cost of  or less (if more elements are covered) 

• Greedy picks the set with least amortized cost so its cost to 
cover  is at most   

• Similarly  is covered at amortized cost at most . Each 
element  incurs an amortized cost at most  up 
until  which is covered at amortized cost 
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Weighted Greedy: Analysis



• Claim.  For any subset , the greedy algorithm covers the 
elements of  with a cost no greater than  times  (the 
cost of choosing  itself) 

• Proof.   

• Each element  incurs an amortized cost at most  
up until  which is covered at amortized cost  

• Thus the greedy algorithm covers all elements of  at an 
amortized cost of 

  

• This analysis can be shown to be tight as well
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Weighted Set Cover



• Set Cover.  Can we do better than   

• [Raz & Safra 1997]. There exists a constant , there is no 
polynomial-time -approximation algorithm, unless .’ 

• Approximation schemes. 

• Let  be a minimization problem, an approximation scheme 
for  is a family of  -approximation algorithms for 

 

• If the running time is polynomial in  (not in  we call it a 
polynomial-time approximation scheme (PTAS) 

• If the running time is polynomial in both  and , we call it a 
fully polynomial-time approximation scheme (FPTAS) 

• FPTAS for NP hard problems such Knapsack and Subset-Sum

O(log n)?
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Wrapping Up Approximations
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