Ford-Fulkerson Analysis



FORD-FULKERSON(G)

FOREACHedgee €E E: f(e) < 0.
G < residual network of G with respect to flow f.
WHILE (there exists an s~t path P in Gy)

f <= AUGMENT(f, P).

Update Gv.

RETURN f.

AUGMENT(f, P)

b < bottleneck capacity of augmenting path P.
FOREACH edge e € P :
IF (e € E, that is, e is forward edge )
Increase f(e) in G by b

ELSE
Decrease f(e) in G by b

RETURN f.



Lecture Outline

e Correctness and Value of Flow:

* Each iteration of the Ford-Fulkerson algorithm sends a
feasible flow through the network

* With each iteration of the Ford-Fulkerson algorithm the
value of the flow increases by b « bottleneck capacity

of the augmenting path P
* Optimality:
« Ford-Fulkerson algorithm computes the maximum flow f
« Prove by constructing a s-f cut such that c(s, 1) = v(f)
* Running time:

 How long does the Ford-Fulkerson algorithm take to
compute the max flow?



Correctness &
Value of Flow



Augmenting Path & Flow

« Claim. Let f be a feasible flow in G and let P be an augmenting path
in G with bottleneck capacity b. Let " < AUGMENT(f, P), then f"is

a feasible flow and v(f") = v(f) + b.

« Proof. Only need to verify constraints on the edges of P
(since f" = ffor other edges). Lete = (u,v) € P

o If eis aforward edge:
f(e) < fe)
< fle)+b
< fe) + (c,—fle)) = ¢,

o If eis abackward edge:

. fle) 2 f(e) = f(e) — b
> fle) - fle) = 0

« Conservation constraint hold on nodes in P (exercise)

5



Augmenting Path & Flow

« Claim. Let f be a feasible flow in G and let P be an augmenting path
in G with bottleneck capacity b. Let " < AUGMENT(f, P), then f"is

a feasible flow and v(f") = v(f) + b.
* Proof.

. Firstedge e € P must be out of s in G,

« P is simple so never visits s again
« ¢ must be a forward edge (P is a path from s to ?)

« Thus f(e) increases by b, increasing v(f) by b
i



Optimality



Ford-Fulkerson Optimality

Recall: If fis any feasible s-f flow and (S, T) is any s-
tcutthenv(f) < c(S,T).

We will show that the Ford-Fulkerson algorithm
terminates in a flow that achieves equality, that is,

Ford-Fulkerson finds a flow f* and there exists a cut
(5%, T%) such that
v(f*) = c(5%, T%)

Proving this shows that it finds the maximum flow!

This also proves the max-flow min-cut theorem



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there

exists a cut (8%, T%) such that v(f) = c(S*, T™).
Proof.

Let §* = {v | vis reachable from s in G},
1=V - §%

IS this an s-f cut?
e sES, e, SUT=VandSNT=9

Consideranedgee = u — vwithu € §*,v € T*,
then what can we say about f(e)?



Recall: Ford-Fulkerson Example

network G and flow f

@

O 0/2
. O
Capacity of cut?

@m0

residual network Gr

nodes reachable from s

flow

9/9

capacity

@

6/6

v

O

0 value of flow
10/10 @ 19
9
bg

o0

No s-t path left!



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there

exists a cut (8%, T%) such that v(f) = c(S*, T™).
Proof.

Let §* = {v | vis reachable from s in G},
1=V - §%

IS this an s-f cut?
e sES, e, SUT=VandSNT=9

Consideranedgee = u — vwithu € §*,v € T*,
then what can we say about f(e)?

» fle) = c(e)

11



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there

exists a cut (8%, T%) such that v(f) = c(S*, T™).

Proof. (Cont.)

Let §* = {v | vis reachable from s in Gy},
1=V - §%

IS this an s-f cut?
e sES, e, SUT=VandSNT=9

Consider an edge ¢ = w — v with
v € §*, w € T*, then what can we say about f(e)?

12



Recall: Ford-Fulkerson Example

network G and flow f

@

O 0/2
. O
Capacity of cut?

@m0

residual network Gr

nodes reachable from s

flow

9/9

capacity

@

6/6

v

O

0 value of flow
10/10 @ 19
9
bg

o0

No s-t path left!



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there

exists a cut (8%, T%) such that v(f) = c(S*, T™).
Proof. (Cont.)

Let §* = {v | vis reachable from s in G},
1=V - §%

IS this an s-f cut?
e sES, e, SUT=VandSNT=9

Consider an edge e = w — v with
v € §*,w € T*, then what can we say about f(e)?

. fley=0

14



Ford-Fulkerson Optimality

Lemma. Let f be a s-f flow in G such that there is no
augmenting path in the residual graph Gf, then there

exists a cut (8%, T%) such that v(f) = c(S*, T™).

Proof. (Cont.)
Let §* = {v | visreachable from sin G¢}, T* = V — §*

Thus, all edges leaving $* are completely saturated and
all edges entering $* have zero flow

V) = JoulS™) = finlS™) = fpu(S™) = (5%, T%) B

Corollary. Ford-Fulkerson returns the maximum flow.

15



Ford-Fulkerson Algorithm
Running Time



Ford-Fulkerson Performance

FORD—-FULKERSON(G)

FOREACHedgee € E: f(e) < 0.
G < residual network of G with respect to flow f.
WHILE (there exists an s~t path P in Gr)

f <= AUGMENT(f, P).

Update Gy.

RETURN f.

* Does the algorithm terminate”

e (Can we bound the number of iterations it does?

* Running time?

17



Ford-Fulkerson Running Time

Recall we proved that with each call to AUGMENT, we increase
value of flow by b = bottleneck(Gf, P)

Assumption. Suppose all capacities c(e) are integers.

Integrality invariant. Throughout Ford—Fulkerson, every edge flow
f(e) and corresponding residual capacity is an integer. Thus b > 1.

Let C = max c(s — u) be the maximum capacity among edges
u

leaving the source s.
it must be that v(f) < (n—1)C = O(nC)

Since, v(f) increases by b > 1 in each iteration, it follows that FF
algorithm terminates in at most v(f) = OnC) iterations.

18



Ford-Fulkerson Running Time

 Claim. Ford-Fulkerson can be implemented to run in
time O(mnmC), wherem = |E| > n — 1 and

C =maxc(s = u).

« Proof. We know algorithm terminates in at most C
iterations. Each iteration takes O(m) time:

. We need to find an augmenting path in Gf

. Gf has at most 2m edges, using BFS/DFS takes
O(m + n) = O(m) time

« Augmenting flow in P takes O(n) time

* Given new flow, we can build new residual graph in
O(m) time B

19



[Digging Deeper] Polynomial time??

* Does the Ford-Fulkerson algorithm run in time
polynomial in the input size?

« Running time is O(nmC), where

C = max c(s — u), suppose it is even larger, that is,
u

C = max c(e)
(4

 What is the input size?

 Let's take an example

20



[Digging Deeper] Polynomial time??

* Question. Does the Ford-Fulkerson algorithm run in
polynomial-time in the size of the input? «<——— ~m, n andlogC

« Answer. No. if max capacity is C, the algorithm can
take > C iterations. Consider the following example.

21

* s—V—W—f
¢ sEW—Y—>f
¢ sV W—

* S—SW—Y—>f

* S Vv—=w—f

* SSW—Y—>f

—

each augmenting path
sends only 1 unit of flow
(# augmenting paths = 2C)



[Digger Deeper] Pseudo-Polynomial

Input graph has n nodes and m = O(n?) edges, each
with capacity c,

. C=maxc(e), then c(e) takes O(log C) bits to represent
eck

« Inputsize: O(nlogn + mlogn + mlog C) bits

e Lett=1logn, b =1ogC

« Inputsize: O(nv + m(v + b))

. Running time: O(nm2?), exponential in the size of C
e Such algorithms are called pseudo-polynomial

* |f the running time is polynomial in the magnitude
but not size of an input parameter.

22



Summary

* (Given a flow network with integer capacities, Ford-
Fulkerson computes the max flow in O(mnC) time

* A constructive proof of the max-flow min-cut theorem
* [tis a pseudo-polynomial algorithm
« Can take exponential time wrt to size of C

* Bad performance in the worst case can be blamed
on poor augmenting path choices

- Next. (Flow Applications) Solving other optimization
problems by reduction them to a network flow problem

23



Network Flow [Optionalj:
Beyond Ford Fulkerson



Edmond and Karp’s Algorithms

 Ford and Fulkerson’s algorithm does not specity which
path in the residual graph to augment

e Poor worst-case behavior of the algorithm can be blamed
on bad choices on augmenting path

* Better choice of augmenting paths. In 1970s, Jack
Edmonds and Richard Karp published two natural rules
for choosing augmenting paths

e Fattest augmenting paths first

e Shortest (in terms of edges) augmenting paths first
(Dinitz independently discovered & analyzed this rule)



Fattest Augmenting Paths First

Ford Fulkerson is essentially a greedy algorithm way
of augmenting paths:

 Choose the augmenting path with largest
bottleneck capacity

Largest bottleneck path can be computed in
O(mlog n) time in a directed graph

e Similar to Dijkstra’s analysis
How many iterations if we use this rule”?

« Won't prove this: takes O(m log C) iterations

Overall running time is O(m?*log nlog C)
(polynomial time!)



Shortest Augmenting Paths First

Choose the augmenting path with the smallest # of edges

Can be found using BFS on G¢in O(m + n) = O(m) time

Surprisingly, this resulting a polynomial-time algorithm
independent of the actual edge capacities !

Analysis looks at “level” of vertices in the BFS tree of Gf

rooted at s —levels only grow over time

Analyzes # of times an edge u — v disappears from Gf

Takes O(mn) iterations overall

Thus overall running time is O(m*n)



Progress on Network Flows

1951 O(m n* C) Dantzig
1955 O(mn C) Ford—Fulkerson
1970 O(m n?) Edmonds—Karp, Dinitz
1974 o) Karzanov
1983 O(m n log n) Sleator—Tarjan
1985 O(m n log C) Gabow
1988 O(m n log (n* / m)) Goldberg—Tarjan
1998 O(m>? log (n* / m) log C) Goldberg—Rao
2013 O(m n) Orlin

2014 O(mn'? log C) Lee—Sidford
2016 Om'"" C'7y Madry

For unit capacity
networks




Summary

* (Given a flow network with integer capacities, the maximum
flow and minimum cut can be computed in O(mn) time.

* Next. Network flow applications!

29



