Ford-Fulkerson Analysis

FORD-FULKERSON(G)

FOREACH edge $e \in E$: $f(e) \leftarrow 0$.

 $G_f \leftarrow$ residual network of *G* with respect to flow *f*.

WHILE (there exists an s \rightarrow t path *P* in *G*_{*f*})

 $f \leftarrow \text{AUGMENT}(f, P).$

Update G_f .

RETURN *f*.

AUGMENT(f, P)

```
b \leftarrow bottleneck capacity of augmenting path P.
```

```
FOREACH edge e \in P:
```

IF ($e \in E$, that is, e is forward edge)

```
Increase f(e) in G by b
```

Else

```
Decrease f(e) in G by b
```

RETURN *f*.

Lecture Outline

- Correctness and Value of Flow:
 - Each iteration of the Ford-Fulkerson algorithm sends a feasible flow through the network
 - With each iteration of the Ford-Fulkerson algorithm the value of the flow increases by $b \leftarrow$ bottleneck capacity of the augmenting path P
- Optimality:
 - Ford-Fulkerson algorithm computes the maximum flow f
 - Prove by constructing a *s*-*t* cut such that c(s, t) = v(f)
- Running time:
 - How long does the Ford-Fulkerson algorithm take to compute the max flow?

Correctness & Value of Flow

Augmenting Path & Flow

- Claim. Let f be a feasible flow in G and let P be an augmenting path in G_f with bottleneck capacity b. Let $f' \leftarrow \text{AUGMENT}(f, P)$, then f' is a feasible flow and v(f') = v(f) + b.
- **Proof**. Only need to verify constraints on the edges of P (since f' = f for other edges). Let $e = (u, v) \in P$

• If e is a forward edge:

$$\begin{array}{l} f(e) \leq f'(e) \\ \leq f(e) + b \\ \leq f(e) + (c_e - f(e)) = c_e \end{array}$$

• If *e* is a backward edge:

•
$$f(e) \ge f'(e) = f(e) - b$$

 $\ge f(e) - f(e) = 0$

• Conservation constraint hold on nodes in P (exercise)

Augmenting Path & Flow

- Claim. Let f be a feasible flow in G and let P be an augmenting path in G_f with bottleneck capacity b. Let $f' \leftarrow \text{AUGMENT}(f, P)$, then f' is a feasible flow and v(f') = v(f) + b.
- Proof.
 - First edge $e \in P$ must be out of s in G_f
 - *P* is simple so never visits *s* again
 - e must be a forward edge (P is a path from s to t)
 - Thus f(e) increases by b, increasing v(f) by b

Optimality

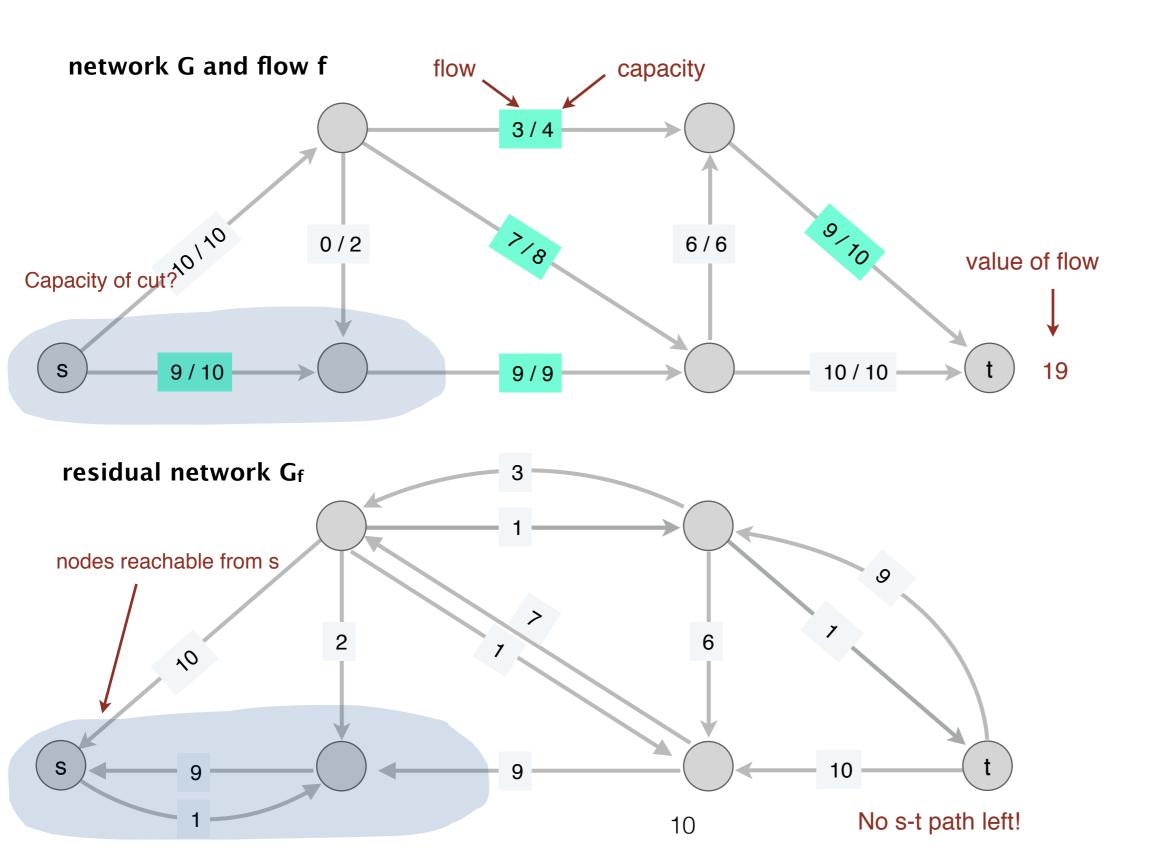
- **Recall**: If *f* is any feasible *s*-*t* flow and (S, T) is any *st* cut then $v(f) \le c(S, T)$.
- We will show that the Ford-Fulkerson algorithm terminates in a flow that achieves equality, that is,
- Ford-Fulkerson finds a flow f^* and there exists a cut (S^*, T^*) such that $v(f^*) = c(S^*, T^*)$
- Proving this shows that it finds the maximum flow!
- This also proves the max-flow min-cut theorem

• Lemma. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_{f} , then there exists a cut (S^* , T^*) such that $v(f) = c(S^*, T^*)$.

• Proof.

- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Is this an *s*-*t* cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
- Consider an edge $e = u \rightarrow v$ with $u \in S^*, v \in T^*$, then what can we say about f(e)?

Recall: Ford-Fulkerson Example



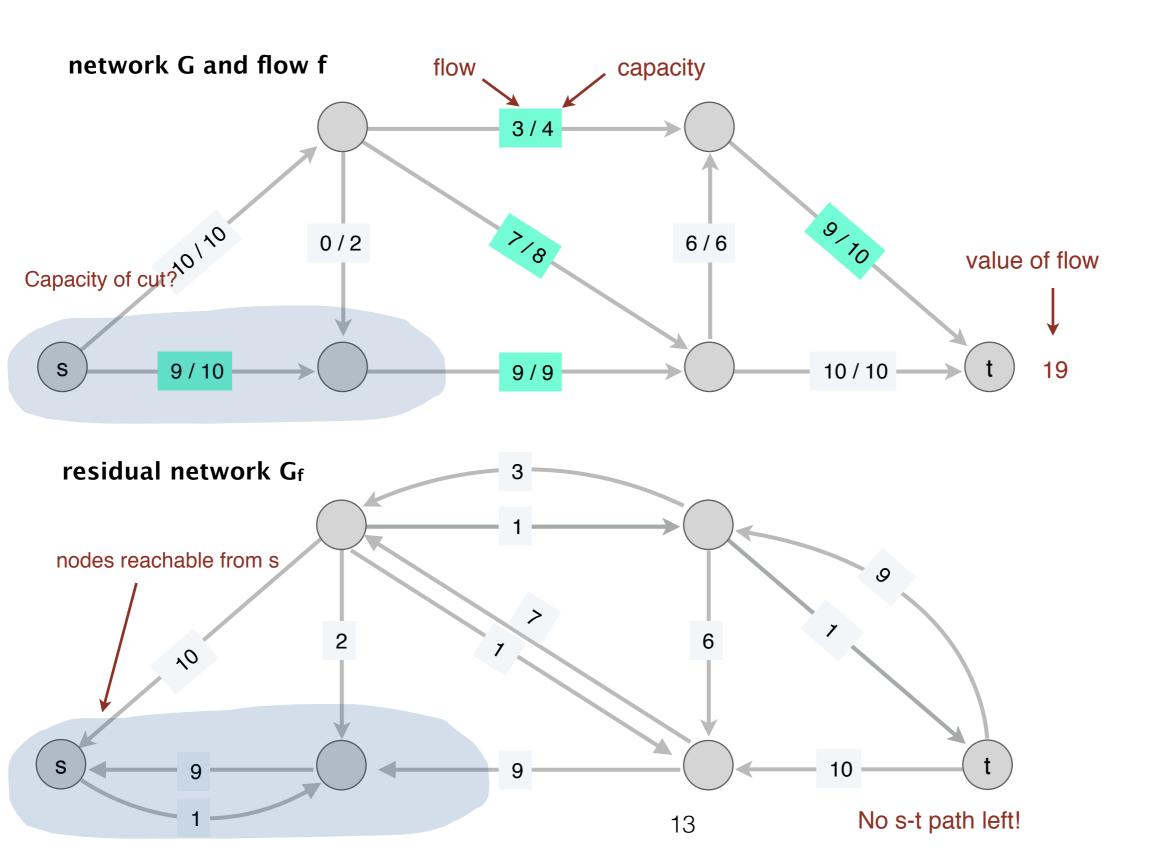
• Lemma. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_{f} , then there exists a cut (S^* , T^*) such that $v(f) = c(S^*, T^*)$.

• Proof.

- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Is this an *s*-*t* cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
- Consider an edge $e = u \rightarrow v$ with $u \in S^*, v \in T^*$, then what can we say about f(e)?
 - f(e) = c(e)

- Lemma. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_{f} , then there exists a cut (S^* , T^*) such that $v(f) = c(S^*, T^*)$.
- Proof. (Cont.)
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V - S^*$
- Is this an *s*-*t* cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
- Consider an edge $e = w \rightarrow v$ with $v \in S^*, w \in T^*$, then what can we say about f(e)?

Recall: Ford-Fulkerson Example



- Lemma. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_{f} , then there exists a cut (S^* , T^*) such that $v(f) = c(S^*, T^*)$.
- Proof. (Cont.)
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Is this an *s*-*t* cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
- Consider an edge $e = w \rightarrow v$ with $v \in S^*, w \in T^*$, then what can we say about f(e)?
 - f(e) = 0

- Lemma. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_{f} , then there exists a cut (S^* , T^*) such that $v(f) = c(S^*, T^*)$.
- Proof. (Cont.)
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}, T^* = V S^*$
- Thus, all edges leaving S^* are completely saturated and all edges entering S^* have zero flow
- $v(f) = f_{out}(S^*) f_{in}(S^*) = f_{out}(S^*) = c(S^*, T^*) \blacksquare$
- **Corollary**. Ford-Fulkerson returns the maximum flow.

Ford-Fulkerson Algorithm Running Time

Ford-Fulkerson Performance

```
FORD-FULKERSON(G)
```

```
FOREACH edge e \in E: f(e) \leftarrow 0.

G_f \leftarrow residual network of G with respect to flow f.

WHILE (there exists an s\rightarrowt path P in G_f)

f \leftarrow AUGMENT(f, P).

Update G_f.

RETURN f.
```

- Does the algorithm terminate?
- Can we bound the number of iterations it does?
- Running time?

Ford-Fulkerson Running Time

- Recall we proved that with each call to AUGMENT, we increase value of flow by $b = \text{bottleneck}(G_f, P)$
- Assumption. Suppose all capacities c(e) are integers.
- Integrality invariant. Throughout Ford–Fulkerson, every edge flow f(e) and corresponding residual capacity is an integer. Thus $b \ge 1$.
- Let $C = \max_{u} c(s \rightarrow u)$ be the maximum capacity among edges leaving the source *s*.
- It must be that $v(f) \le (n-1)C = O(nC)$
- Since, v(f) increases by $b \ge 1$ in each iteration, it follows that FF algorithm terminates in at most v(f) = O(nC) iterations.

Ford-Fulkerson Running Time

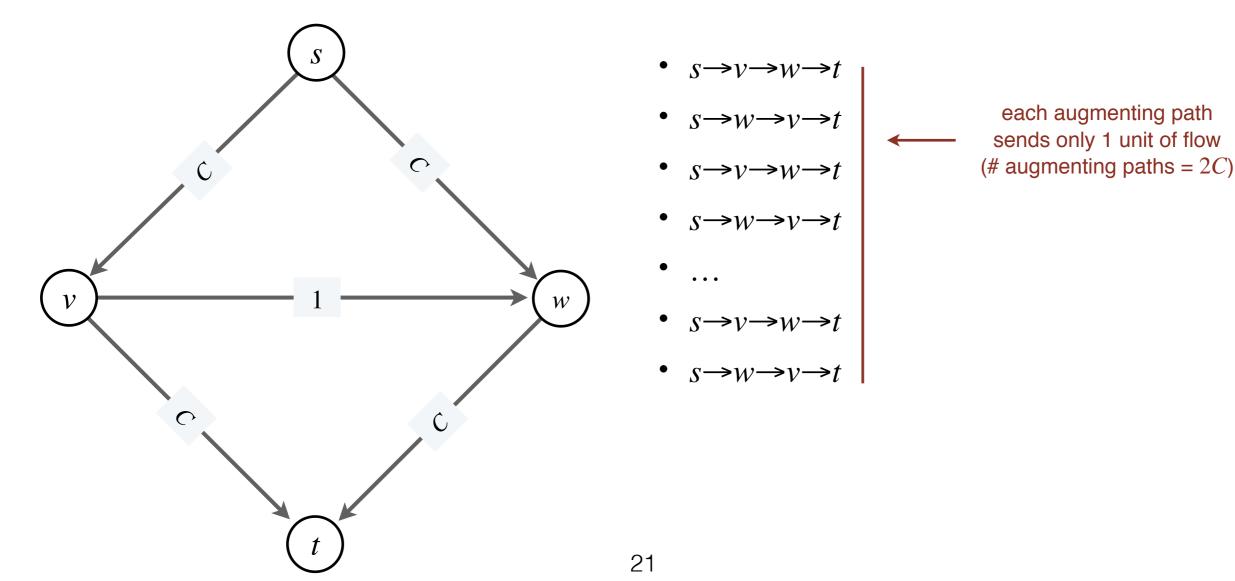
- Claim. Ford-Fulkerson can be implemented to run in time O(nmC), where $m = |E| \ge n 1$ and $C = \max_{u} c(s \rightarrow u)$.
- **Proof**. We know algorithm terminates in at most C iterations. Each iteration takes O(m) time:
 - We need to find an augmenting path in G_f
 - G_f has at most 2m edges, using BFS/DFS takes O(m + n) = O(m) time
 - Augmenting flow in P takes O(n) time
 - Given new flow, we can build new residual graph in O(m) time

[Digging Deeper] Polynomial time?

- Does the Ford-Fulkerson algorithm run in time polynomial in the input size?
- Running time is O(nmC), where $C = \max c(s \rightarrow u)$, suppose it is even larger, that is, $C = \max_{e}^{u} c(e)$
- What is the input size?
- Let's take an example

[Digging Deeper] Polynomial time?

- Question. Does the Ford-Fulkerson algorithm run in polynomial-time in the size of the input? <----- ~ m, n, and log C
- Answer. No. if max capacity is C, the algorithm can take $\geq C$ iterations. Consider the following example.



[Digger Deeper] Pseudo-Polynomial

- Input graph has n nodes and $m = O(n^2)$ edges, each with capacity c_e
- $C = \max_{e \in E} c(e)$, then c(e) takes $O(\log C)$ bits to represent
- Input size: $O(n \log n + m \log n + m \log C)$ bits
- Let $t = \log n$, $b = \log C$
- Input size: O(nv + m(v + b))
- Running time: $O(nm2^b)$, exponential in the size of C
- Such algorithms are called **pseudo-polynomial**
 - If the running time is polynomial in the **magnitude** but **not size** of an input parameter.

Summary

- Given a flow network with integer capacities, Ford-Fulkerson computes the max flow in O(mnC) time
- A **constructive proof** of the max-flow min-cut theorem
- It is a pseudo-polynomial algorithm
 - Can take exponential time wrt to size of C
 - Bad performance in the worst case can be blamed on poor augmenting path choices
- Next. (Flow Applications) Solving other optimization problems by reduction them to a network flow problem

Network Flow [Optional]: Beyond Ford Fulkerson

Edmond and Karp's Algorithms

- Ford and Fulkerson's algorithm does not specify which path in the residual graph to augment
- Poor worst-case behavior of the algorithm can be blamed on bad choices on augmenting path
- Better choice of augmenting paths. In 1970s, Jack Edmonds and Richard Karp published two natural rules for choosing augmenting paths
 - Fattest augmenting paths first
 - Shortest (in terms of edges) augmenting paths first (Dinitz independently discovered & analyzed this rule)

Fattest Augmenting Paths First

- Ford Fulkerson is essentially a greedy algorithm way of augmenting paths:
 - Choose the augmenting path with largest bottleneck capacity
- Largest bottleneck path can be computed in $O(m \log n)$ time in a directed graph
 - Similar to Dijkstra's analysis
- How many iterations if we use this rule?
 - Won't prove this: takes $O(m \log C)$ iterations
- Overall running time is O(m² log n log C) (polynomial time!)

Shortest Augmenting Paths First

- Choose the augmenting path with the smallest # of edges
- Can be found using BFS on G_f in O(m + n) = O(m) time
- Surprisingly, this resulting a polynomial-time algorithm independent of the actual edge capacities !
- Analysis looks at "level" of vertices in the BFS tree of $G_{\!f}$ rooted at s —levels only grow over time
- Analyzes # of times an edge $u \rightarrow v$ disappears from G_f
- Takes O(mn) iterations overall
- Thus overall running time is $O(m^2n)$

Progress on Network Flows

1951	$O(m n^2 C)$	Dantzig
1955	$O(m \ n \ C)$	Ford–Fulkerson
1970	$O(m n^2)$	Edmonds-Karp, Dinitz
1974	$O(n^3)$	Karzanov
1983	$O(m n \log n)$	Sleator-Tarjan
1985	$O(m n \log C)$	Gabow
1988	$O(m n \log (n^2 / m))$	Goldberg–Tarjan
1998	$O(m^{3/2} \log (n^2 / m) \log C)$	Goldberg-Rao
2013	O(m n)	Orlin
2014	$\tilde{O}(m n^{1/2} \log C)$	Lee–Sidford
2016	$ ilde{O}(m^{10/7} \ C^{1/7})$	Mądry
		For unit capacity networks

Summary

- Given a flow network with integer capacities, the maximum flow and minimum cut can be computed in O(mn) time.
- **Next.** Network flow applications!