
Ford-Fulkerson Analysis
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FORD–FULKERSON(G)                          

________________________________________________________________

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.

WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.

AUGMENT( f, P)                          


  ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E, that is, e is forward edge )  

               Increase f(e) in G by 

ELSE          
              Decrease f(e) in G by 

RETURN  f.

b

b

b



• Correctness and Value of Flow: 

• Each iteration of the Ford-Fulkerson algorithm sends a 
feasible flow through the network 

• With each iteration of the Ford-Fulkerson algorithm the 
value of the flow increases by   bottleneck capacity 
of the augmenting path  

• Optimality: 

• Ford-Fulkerson algorithm computes the maximum flow  

• Prove by constructing a -  cut such that   

• Running time: 

• How long does the Ford-Fulkerson algorithm take to 
compute the max flow?

b ←
P

f
s t c(s, t) = v( f )

Lecture Outline
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Correctness &  
Value of Flow
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• Claim.  Let  be a feasible flow in  and let  be an augmenting path 
in  with bottleneck capacity .  Let  , then  is 
a feasible flow and  . 

• Proof. Only need to verify constraints on the edges of   
(since  for other edges).  Let  

• If  is a forward edge:  
 

       
       

• If  is a backward edge: 

•  
        

• Conservation constraint hold on nodes in  (exercise)

f G P
Gf b f′� ← AUGMENT( f, P) f′�

v( f′�) = v( f ) + b
P

f′� = f e = (u, v) ∈ P
e

f(e) ≤ f′ �(e)
≤ f(e) + b
≤ f(e) + (ce − f(e)) = ce

e
f(e) ≥ f′ �(e) = f(e) − b

≥ f(e) − f(e) = 0
P

Augmenting Path & Flow
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• Claim.  Let  be a feasible flow in  and let  be an augmenting path 
in  with bottleneck capacity .  Let  , then  is 
a feasible flow and  . 

• Proof.  

• First edge  must be out of  in  

•  is simple so never visits  again  

•  must be a forward edge (  is a path from  to ) 

• Thus  increases by , increasing  by   

f G P
Gf b f′� ← AUGMENT( f, P) f′�

v( f′�) = v( f ) + b

e ∈ P s Gf

P s
e P s t

f(e) b v( f ) b
∎

Augmenting Path & Flow
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Optimality
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Ford-Fulkerson Optimality
• Recall: If  is any feasible -  flow and  is any -

 cut then . 

• We will show that the Ford-Fulkerson algorithm 
terminates in a flow that achieves equality, that is, 

• Ford-Fulkerson finds a flow  and there exists a cut 
 such that  

         

• Proving this shows that it finds the maximum flow! 

• This also proves the max-flow min-cut theorem

f s t (S, T ) s
t v( f ) ≤ c(S, T )

f*
(S*, T*)

v( f*) = c(S*, T*)
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there 
exists a cut  such that .   

• Proof. 

• Let , 
   

• Is this an  cut?   

• ,  and  

• Consider an edge  with , 
then what can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)
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Recall: Ford-Fulkerson Example
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No s-t path left!1
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there 
exists a cut  such that .   

• Proof. 

• Let , 
   

• Is this an  cut?   

• ,  and  

• Consider an edge  with , 
then what can we say about ?  

•  

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there 
exists a cut  such that .   

• Proof. (Cont.)  

• Let , 
   

• Is this an  cut?   

• ,  and  

• Consider an edge  with 
, then what can we say about ? 

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v
v ∈ S*, w ∈ T* f(e)
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Recall: Ford-Fulkerson Example
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there 
exists a cut  such that .   

• Proof. (Cont.)  

• Let , 
   

• Is this an  cut?   

• ,  and  

• Consider an edge  with 
, then what can we say about ?  

•

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v
v ∈ S*, w ∈ T* f(e)

f(e) = 0
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Ford-Fulkerson Optimality
• Lemma. Let  be a  flow in  such that there is no 

augmenting path in the residual graph , then there 
exists a cut  such that .   

• Proof. (Cont.) 

• Let ,    

• Thus, all edges leaving  are completely saturated and 
all edges entering  have zero flow 

•   

• Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v( f ) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v( f ) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎

15



Ford-Fulkerson Algorithm
Running Time
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Ford-Fulkerson Performance

• Does the algorithm terminate?   

• Can we bound the number of iterations it does? 

• Running time?

FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.

WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, P).

Update Gf.

RETURN  f.
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• Recall we proved that with each call to AUGMENT, we increase 
value of flow by  

• Assumption.  Suppose all capacities  are integers. 

• Integrality invariant.  Throughout Ford–Fulkerson, every edge flow 
 and corresponding residual capacity is an integer.  Thus . 

• Let  be the maximum capacity among edges 

leaving the source .   

• It must be that  

• Since,  increases by  in each iteration, it follows that FF 
algorithm terminates in at most  iterations.

b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v( f ) ≤ (n − 1)C = O(nC)

v( f ) b ≥ 1
v( f ) = O(nC)

Ford-Fulkerson Running Time
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• Claim.  Ford-Fulkerson can be implemented to run in 
time , where  and 

. 

• Proof.  We know algorithm terminates in at most  
iterations.  Each iteration takes  time: 

• We need to find an augmenting path in  

•  has at most  edges, using BFS/DFS takes 
 time 

• Augmenting flow in  takes  time 

• Given new flow, we can build new residual graph in 
 time 

O(nmC) m = |E | ≥ n − 1
C = max

u
c(s → u)

C
O(m)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m) ∎

Ford-Fulkerson Running Time
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[Digging Deeper] Polynomial time?
• Does the Ford-Fulkerson algorithm run in time 

polynomial in the input size?  

• Running time is , where 
, suppose it is even larger, that is, 

 

• What is the input size?    

• Let’s take an example

O(nmC)
C = max

u
c(s → u)

C = max
e

c(e)
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• Question.  Does the Ford-Fulkerson algorithm run in 
polynomial-time in the size of the input? 

• Answer.  No. if max capacity is , the algorithm can 
take  iterations.  Consider the following example.

C
≥ C

21

1

C

C

C

C
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s

v w

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t

each augmenting path
sends only 1 unit of flow

(# augmenting paths = 2C)

[Digging Deeper] Polynomial time?

~ m, n, and log C



[Digger Deeper] Pseudo-Polynomial
• Input graph has  nodes and  edges, each 

with capacity  

•  = , then  takes  bits to represent 

• Input size:  bits 

• Let ,  

• Input size:  

• Running time: , exponential in the size of   

• Such algorithms are called pseudo-polynomial

• If the running time is polynomial in the magnitude 
but not size of an input parameter.

n m = O(n2)
ce

C max
e∈E

c(e) c(e) O(log C)

O(n log n + m log n + m log C)
t = log n b = log C

O(nv + m(v + b))

O(nm2b) C
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Summary
• Given a flow network with integer capacities, Ford-

Fulkerson computes the max flow in  time 

• A constructive proof of the max-flow min-cut theorem 

• It is a pseudo-polynomial algorithm 

• Can take exponential time wrt to size of  

• Bad performance in the worst case can be blamed 
on poor augmenting path choices 

• Next.  (Flow Applications)  Solving other optimization 
problems by reduction them to a network flow problem

O(mnC)

C
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Network Flow [Optional]:  
Beyond Ford Fulkerson
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Edmond and Karp’s Algorithms
• Ford and Fulkerson’s algorithm does not specify which 

path in the residual graph to augment 

• Poor worst-case behavior of the algorithm can be blamed 
on bad choices on augmenting path 

• Better choice of augmenting paths.  In 1970s, Jack 
Edmonds and Richard Karp published two natural rules 
for choosing augmenting paths 

• Fattest augmenting paths first 

• Shortest (in terms of edges) augmenting paths first 
(Dinitz independently discovered & analyzed this rule)



Fattest Augmenting Paths First
• Ford Fulkerson is essentially a greedy algorithm way 

of augmenting paths: 

• Choose the augmenting path with largest 
bottleneck capacity 

• Largest bottleneck path can be computed in 
 time in a directed graph 

• Similar to Dijkstra’s analysis 

• How many iterations if we use this rule? 

• Won’t prove this: takes  iterations 

• Overall running time is  
(polynomial time!)

O(m log n)

O(m log C)

O(m2 log n log C)



Shortest Augmenting Paths First
• Choose the augmenting path with the smallest # of edges 

• Can be found using BFS on  in  time 

• Surprisingly, this resulting a polynomial-time algorithm 
independent of the actual edge capacities ! 

• Analysis looks at “level” of vertices in the BFS tree of  
rooted at  —levels only grow over time 

• Analyzes # of times an edge  disappears from  

• Takes  iterations overall 

• Thus overall running time is 

Gf O(m + n) = O(m)

Gf
s

u → v Gf

O(mn)

O(m2n)



Progress on Network Flows
1951 O(m n2 C) Dantzig

1955 O(m n C) Ford–Fulkerson

1970 O(m n2) Edmonds–Karp, Dinitz

1974 O(n3) Karzanov

1983 O(m n log n) Sleator–Tarjan

1985 O(m n log C) Gabow

1988 O(m n log (n2 / m)) Goldberg–Tarjan

1998 O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 O(m n) Orlin

2014 Õ(m n1/2 log C) Lee–Sidford

2016 Õ(m10/7 C1/7) Mądry

For unit capacity 
networks



Summary
• Given a flow network with integer capacities, the maximum 

flow and minimum cut can be computed in  time. 

• Next.  Network flow applications!

O(mn)
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