
Ford-Fulkerson Analysis

1

2

FORD–FULKERSON(G)

__

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.

WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

AUGMENT(f, P)
__

 ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E, that is, e is forward edge)

 Increase f(e) in G by

ELSE  
 Decrease f(e) in G by

RETURN f.

b

b

b

• Correctness and Value of Flow:

• Each iteration of the Ford-Fulkerson algorithm sends a
feasible flow through the network

• With each iteration of the Ford-Fulkerson algorithm the
value of the flow increases by bottleneck capacity
of the augmenting path

• Optimality:

• Ford-Fulkerson algorithm computes the maximum flow

• Prove by constructing a - cut such that

• Running time:

• How long does the Ford-Fulkerson algorithm take to
compute the max flow?

b ←
P

f
s t c(s, t) = v(f)

Lecture Outline

3

Correctness &  
Value of Flow

4

• Claim. Let be a feasible flow in and let be an augmenting path
in with bottleneck capacity . Let , then is
a feasible flow and .

• Proof. Only need to verify constraints on the edges of  
(since for other edges). Let

• If is a forward edge:  
 

  

• If is a backward edge:

•  

• Conservation constraint hold on nodes in (exercise)

f G P
Gf b f′� ← AUGMENT(f, P) f′�

v(f′�) = v(f) + b
P

f′� = f e = (u, v) ∈ P
e

f(e) ≤ f′ �(e)
≤ f(e) + b
≤ f(e) + (ce − f(e)) = ce

e
f(e) ≥ f′ �(e) = f(e) − b

≥ f(e) − f(e) = 0
P

Augmenting Path & Flow

5

• Claim. Let be a feasible flow in and let be an augmenting path
in with bottleneck capacity . Let , then is
a feasible flow and .

• Proof.

• First edge must be out of in

• is simple so never visits again

• must be a forward edge (is a path from to)

• Thus increases by , increasing by  

f G P
Gf b f′� ← AUGMENT(f, P) f′�

v(f′�) = v(f) + b

e ∈ P s Gf

P s
e P s t

f(e) b v(f) b
∎

Augmenting Path & Flow

6

Optimality

7

Ford-Fulkerson Optimality
• Recall: If is any feasible - flow and is any -

 cut then .

• We will show that the Ford-Fulkerson algorithm
terminates in a flow that achieves equality, that is,

• Ford-Fulkerson finds a flow and there exists a cut
 such that  

• Proving this shows that it finds the maximum flow!

• This also proves the max-flow min-cut theorem

f s t (S, T) s
t v(f) ≤ c(S, T)

f*
(S*, T*)

v(f*) = c(S*, T*)

8

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there
exists a cut such that .

• Proof.

• Let ,

• Is this an cut?

• , and

• Consider an edge with ,
then what can we say about ?

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

9

Recall: Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

10

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there
exists a cut such that .

• Proof.

• Let ,

• Is this an cut?

• , and

• Consider an edge with ,
then what can we say about ?

•

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = u → v u ∈ S*, v ∈ T*
f(e)

f(e) = c(e)
11

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there
exists a cut such that .

• Proof. (Cont.)

• Let ,

• Is this an cut?

• , and

• Consider an edge with
, then what can we say about ?

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v
v ∈ S*, w ∈ T* f(e)

12

Recall: Ford-Fulkerson Example

s t

0 / 2
10 / 1

0 6 / 6

10 / 10

3 / 4

7 / 8

9 / 99 / 10 19

9 / 10

flow capacity

10

 10 6

9

2

3

9

1

s

 1

t9

1
7

No s-t path left!1

network G and flow f

value of flow

residual network Gf

nodes reachable from s

Capacity of cut?

13

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there
exists a cut such that .

• Proof. (Cont.)

• Let ,

• Is this an cut?

• , and

• Consider an edge with
, then what can we say about ?

•

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf}
T* = V − S*

s-t
s ∈ S, t ∈ T S ∪ T = V S ∩ T = ∅

e = w → v
v ∈ S*, w ∈ T* f(e)

f(e) = 0
14

Ford-Fulkerson Optimality
• Lemma. Let be a flow in such that there is no

augmenting path in the residual graph , then there
exists a cut such that .

• Proof. (Cont.)

• Let ,

• Thus, all edges leaving are completely saturated and
all edges entering have zero flow

•

• Corollary. Ford-Fulkerson returns the maximum flow.

f s-t G
Gf

(S*, T*) v(f) = c(S*, T*)

S* = {v | v is reachable from s in Gf} T* = V − S*

S*
S*

v(f) = fout(S*) − fin(S*) = fout(S*) = c(S*, T*) ∎

15

Ford-Fulkerson Algorithm
Running Time

16

Ford-Fulkerson Performance

• Does the algorithm terminate?

• Can we bound the number of iterations it does?

• Running time?

FORD–FULKERSON(G)
__
_

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.

WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, P).

Update Gf.

RETURN f.

17

• Recall we proved that with each call to AUGMENT, we increase
value of flow by

• Assumption. Suppose all capacities are integers.

• Integrality invariant. Throughout Ford–Fulkerson, every edge flow
 and corresponding residual capacity is an integer. Thus .

• Let be the maximum capacity among edges

leaving the source .

• It must be that

• Since, increases by in each iteration, it follows that FF
algorithm terminates in at most iterations.

b = bottleneck(Gf , P)

c(e)

f(e) b ≥ 1

C = max
u

c(s → u)

s

v(f) ≤ (n − 1)C = O(nC)

v(f) b ≥ 1
v(f) = O(nC)

Ford-Fulkerson Running Time

18

• Claim. Ford-Fulkerson can be implemented to run in
time , where and

.

• Proof. We know algorithm terminates in at most
iterations. Each iteration takes time:

• We need to find an augmenting path in

• has at most edges, using BFS/DFS takes
 time

• Augmenting flow in takes time

• Given new flow, we can build new residual graph in
 time

O(nmC) m = |E | ≥ n − 1
C = max

u
c(s → u)

C
O(m)

Gf

Gf 2m
O(m + n) = O(m)

P O(n)

O(m) ∎

Ford-Fulkerson Running Time

19

[Digging Deeper] Polynomial time?
• Does the Ford-Fulkerson algorithm run in time

polynomial in the input size?

• Running time is , where
, suppose it is even larger, that is,

• What is the input size?

• Let’s take an example

O(nmC)
C = max

u
c(s → u)

C = max
e

c(e)

20

• Question. Does the Ford-Fulkerson algorithm run in
polynomial-time in the size of the input?

• Answer. No. if max capacity is , the algorithm can
take iterations. Consider the following example.

C
≥ C

21

1

C

C

C

C

t

s

v w

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t

each augmenting path
sends only 1 unit of flow

(# augmenting paths = 2C)

[Digging Deeper] Polynomial time?

~ m, n, and log C

[Digger Deeper] Pseudo-Polynomial
• Input graph has nodes and edges, each

with capacity

• = , then takes bits to represent

• Input size: bits

• Let ,

• Input size:

• Running time: , exponential in the size of

• Such algorithms are called pseudo-polynomial

• If the running time is polynomial in the magnitude
but not size of an input parameter.

n m = O(n2)
ce

C max
e∈E

c(e) c(e) O(log C)

O(n log n + m log n + m log C)
t = log n b = log C

O(nv + m(v + b))

O(nm2b) C

22

Summary
• Given a flow network with integer capacities, Ford-

Fulkerson computes the max flow in time

• A constructive proof of the max-flow min-cut theorem

• It is a pseudo-polynomial algorithm

• Can take exponential time wrt to size of

• Bad performance in the worst case can be blamed
on poor augmenting path choices

• Next. (Flow Applications) Solving other optimization
problems by reduction them to a network flow problem

O(mnC)

C

23

Network Flow [Optional]:  
Beyond Ford Fulkerson

24

Edmond and Karp’s Algorithms
• Ford and Fulkerson’s algorithm does not specify which

path in the residual graph to augment

• Poor worst-case behavior of the algorithm can be blamed
on bad choices on augmenting path

• Better choice of augmenting paths. In 1970s, Jack
Edmonds and Richard Karp published two natural rules
for choosing augmenting paths

• Fattest augmenting paths first

• Shortest (in terms of edges) augmenting paths first
(Dinitz independently discovered & analyzed this rule)

Fattest Augmenting Paths First
• Ford Fulkerson is essentially a greedy algorithm way

of augmenting paths:

• Choose the augmenting path with largest
bottleneck capacity

• Largest bottleneck path can be computed in
 time in a directed graph

• Similar to Dijkstra’s analysis

• How many iterations if we use this rule?

• Won’t prove this: takes iterations

• Overall running time is
(polynomial time!)

O(m log n)

O(m log C)

O(m2 log n log C)

Shortest Augmenting Paths First
• Choose the augmenting path with the smallest # of edges

• Can be found using BFS on in time

• Surprisingly, this resulting a polynomial-time algorithm
independent of the actual edge capacities !

• Analysis looks at “level” of vertices in the BFS tree of
rooted at —levels only grow over time

• Analyzes # of times an edge disappears from

• Takes iterations overall

• Thus overall running time is

Gf O(m + n) = O(m)

Gf
s

u → v Gf

O(mn)

O(m2n)

Progress on Network Flows
1951 O(m n2 C) Dantzig

1955 O(m n C) Ford–Fulkerson

1970 O(m n2) Edmonds–Karp, Dinitz

1974 O(n3) Karzanov

1983 O(m n log n) Sleator–Tarjan

1985 O(m n log C) Gabow

1988 O(m n log (n2 / m)) Goldberg–Tarjan

1998 O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 O(m n) Orlin

2014 Õ(m n1/2 log C) Lee–Sidford

2016 Õ(m10/7 C1/7) Mądry

For unit capacity
networks

Summary
• Given a flow network with integer capacities, the maximum

flow and minimum cut can be computed in time.

• Next. Network flow applications!

O(mn)

29

