
Recursion Tree Method
and Selection

Check in and Reminders
• Assignment 3 was due last night
• If you are taking a late day, I have office hours today from

12.30-2 pm @ CS common room
• I also have office hours Thursday 1-2 pm @ my office
• Friday office hours on GLOW
• Come see me if you have any questions, or just to chat!

• I always want to know how my students are doing
• Assignment 4 is out (Divide and Conquer)

• Use strong induction to prove correctness of divide and
conquer algorithms

• Jeff Erickson’s book has really good coverage of recursion
trees and analyzing recurrences

General Recursion Trees
• Consider a divide and conquer algorithm that

• spends time on non-recursive work and makes
recursive calls, each on a problem of size

• Up to constant factors (which we hide in , the running time of
the algorithm is given by what recurrence? 

•

• Because we care about asymptotic bounds, we can assume base
case is a small constant, say

O(f(n)) r
n/c

O())

T(n) = rT(n/c) + f(n)

T(n) = 1

General Recursion Trees

A recursion tree for the recurrence T(n) = rT(n /c) + f(n)

• For each , the th level of tree has exactly nodes

• Each node at level has cost

i i ri

i, f(n/ci)

General Recursion Trees
• Running time of a recursive algorithm is the sum of all the

values (sum of work at all nodes at each level) in the recursion tree

• For each , the th level of tree has exactly nodes

• Each node at level has cost

•
Thus,

• Here is the depth of the tree

• Number of leaves in the tree:

• Cost at leaves:

T(n)

i i ri

i, f(n/ci)

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

L = logc n

rL = nlogc r

O(nlogc rf(1))

General Recursion Trees
• Running time of a recursive algorithm is the sum of all the

values (sum of work at all nodes at each level) in the recursion tree

• For each , the th level of tree has exactly nodes

• Each node at level has cost

•
Thus,

• Here is the depth of the tree

• Number of leaves in the tree: (why?)

• Cost at leaves:

T(n)

i i ri

i, f(n/ci)

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

L = logc n

rL = nlogc r

O(nlogc rf(1))

rL = rlogc n = (2log2 r)logc n = (2logc n)log2 r = (2log2 n)
log2 r
log2 c = nlogc r

Easy Cases to Evaluate

• Decreasing series. If the series decays exponentially (every term
is a constant factor smaller than previous): cost at root dominates:  

• Equal. If all terms in the series are equal:  

• Increasing series. If the series grows exponentially (every terms is
constant factor larger than previous): the cost at leaves dominates:  

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

T(n) = O(f(n))

T(n) = O(f(n) ⋅ L) = O(f(n)log n)

T(n) = O(nlogc r)

In Class Exercises
• Take a few minutes to draw recursions trees for each of the following

recurrences

• Then break into small groups (~size 3) and discuss which of the
three cases each of them fall into  
 

•  

•

T(n) = 2(Tn/2) + n2

T(n) = 3T(n/2) + n

[Akra–Bazzi ’98]: Master Theorem
(Master Theorem.) Let are constants and . Let

 be defined on the nonnegative integers by the recurrence
, where we interpret as .  

 
Then can be bounded asymptotically as follows.

• If for some constant , then

• If , then

• If , for some constant , and if
 for some constant and all sufficiently large

, then

a ≥ 1, b > 1 f(n) ≥ 0
T(n)
T(n) = r (n/c) + f(n) n/c ⌊n/c⌋ or ⌈n/c⌉

T(n)

f(n) = nlogc r−ϵ ϵ > 0 T(n) = Θ(nlogc r)

f(n) = Θ(nlogc r) T(n) = Θ(nlogc r log n)

f(n) = Ω(nlogc r+ϵ) ϵ > 0
rf(n/b) ≤ c0 f(n) c0 < 1
n T(n) = Θ(f(n))

Master Theorem Broken Down
Intuitively Master theorem is comparing work at root versus work at
leaves of the recursion tree:

Three cases as before:

• Work at leaves dominates, then

• Work is same at root and leaves (and thus throughout the tree),
then (work times number of levels)

• Work at root dominates, then

f(n)
Θ(nlogc r)

T(n) = Θ(nlogc r)
f(n)

T(n) = Θ(f(n)log n)
T(n) = Θ(f(n))

Fun: Pancake Sorting
• You are given a stack of pancakes of different sizes

• Goal. sort the pancakes so that smaller pancakes are on top of
larger pancakes

• Only operation you can perform is a flip

• Insert a spatula under the top pancakes and flip them all over

• Describe an algorithm to sort an arbitrary stack of n pancakes using
 flips.

• Best known lower and upper bounds  
on # of flips:

• Famous software developer wrote a paper  
on this as an undergrad…

n

k

O(n)

1.07n and 1.64n

Selection: Problem Statement
Given an array of size , find the th smallest element for
any

• Special cases: min , max :

• Linear time,

• What about median ?

• Sorting: compares

• Binary heap: compares 

Question. Can we do it in compares?

• Surprisingly yes.

• Selection is easier than sorting.

A[1,…, n] n k
1 ≤ k ≤ n

k = 1 k = n
O(n)

k = ⌊n + 1⌋/2
O(n log n)

O(n log k)

O(n)

Selection: Problem Statement
Example. Take this array of size 10:  
 

Suppose we want to find 4th smallest element

• If we can find a pivot from

• Such that 3/10 of the array is less than and 6/10 fo the
array is greater than

• Then we have found the 4th smallest element!

• We can return !

• Else, we partition around and recurse

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

p A[1,…n]
p

p

p
A p

Selection Algorithm: Idea
Select :

If : return

Else:

• Choose a pivot ; let be the rank of

• Partition(

• If , return

• Else:

• If : Select

• Else: Select

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

How to Choose a Good Pivot?
• Recurrence for pivot of rank

•

• We don’t know , so assuming the worst:

•

• Simplify: use = length of recursive subproblem

•

• For what do we get a linear solution?

r
T(n) = max{T(r), T(n − r)} + O(n)

r
T(n) = max

1≤r≤n
max{T(r), T(n − r)} + O(n)

ℓ
T(n) = max

1≤ℓ≤n−1
T(ℓ) + O(n)

ℓ

How to Choose a Good Pivot?

• If we reduce subproblem size by constant factor each time,
we get a linear solution

• That is, for some constant

• for some constant
• Expands to a decreasing geometric series
• Largest term at root dominates:

Take away.
• We want a pivot that partitions such that where larger subproblem

is constant factor smaller than
• If we can find an “approximate median” in linear time, we can

find the median in linear time as well!

T(n) = max
1≤n−1

T(ℓ) + O(n)

ℓ ≤ αn α < 1
T(n) ≤ T(αn) + O(n) α < 1

T(n) = O(n)

n

Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

n = 54

• Divide the array of size into groups of elements (ignore
leftovers)

• Find median of each group

n ⌈n/5⌉ 5

Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 18 35

43

2328 40 19 31

15

n = 54

medians

• Divide the array of size into groups of elements (ignore
leftovers)

• Find median of each group

n ⌈n/5⌉ 5

Finding an Approximate Median
• Divide the array of size into groups of elements (ignore

leftovers)
• Find median of each group
• Find median of medians recursively
• Use median of medians as pivot

n ⌈n/5⌉ 5

M ← ⌈n/5⌉
M

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians

Visualizing MoM
• In the 5 x n/5 grid, each column represents five consecutive

elements

• Imagine each column is sorted top down

• Imagine the columns as a whole are sorted left-right

• We don’t actually do this!

• MoM is the element closest to center of grid

Visualizing MoM
• Red cells (at least) in size are smaller than

• If we are looking for an element larger than , we can throw these
out, before recursing

• Symmetrically, we can throw out elements smaller than if
looking for a smaller element

• Thus, the recursive problem size is at most

3n/10 M
M

3n/10 M

7n/10

How Good is Median of Medians
Claim. Median of medians is a good pivot, that is, at least th of
the elements are and at least th of the elements are . 

Proof.

• Let be the size of each group.

• is the median of medians

• So of the group medians

• Each median is greater than 2 elements in its group

• Thus elements

• Symmetrically, elements.

M 3/10
≥ M 3/10 ≤ M

g = ⌈n/5⌉
M g

M ≥ g/2

M ≥ 3g/2 = 3n/10
M ≤ 3n/10 ∎

Analysis: Running Time
• Question. How to compute median of median recursively?

• MoM():

• If : return

• Else:

• Divide into groups

• Compute median of each group

• group medians

• Mom()

A, n
n = = 1 A[1]

A ⌈n/5⌉

A′ � ←
A′�, ⌈n/5⌉

Not recursive; O(n)

Not recursive; O(n)

• Recurrence just for MoM:

•

• MoM():

• If : return

• Else:

• Divide into groups

• Compute median of each group

• group medians

• Mom()

T(n) = T(n/5) + O(n)
A, n

n = = 1 A[1]

A ⌈n/5⌉

A′ � ←
A′�, ⌈n/5⌉

Analysis: Running Time

Analysis: Overall
Select :

If : return

Else:

• Choose a pivot ; let be the rank of

• Partition(

• If , return

• Else:

• If : Select

• Else: Select

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

T(n /5) + O(n)

Larger subproblem
has size ≤ 7n /10

Overall: T(n) = T(n/5) + T(7n/10) + O(n)

Selection Recurrence
• Okay, so we have a good pivot

• We are still doing two recursive calls

•

• Key: total work at each level still goes down!

• Decaying series gives us :

T(n) ≤ T(n/5) + T(7n/10) + O(n)

T(n) = O(n)

Why the Magic Number 5?
• What was so special about 5 in our algorithm?

• It is the smallest odd number that works!

• (Even numbers are problematic for medians)

• Let us analyze the recurrence with groups of size 3

•

• Work is equal at each level of the tree!

•

T(n) ≤ T(n/3) + T(2n/3) + O(n)

T(n) = Θ(n log n)

Theory vs Practice
• -time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973]

• Does compares

• Upper bound:

• [Dor–Zwick 1995] compares

• Lower bound:

• [Dor–Zwick 1999] compares.

• Constants are still too large for practice

• Random pivot works well in most cases!

• We will analyze this when we do randomized algorithms

O(n)
≤ 5.4305n

≤ 2.95n

≥ (2 + 2−80)n

Guess & Verify Recurrences
• Method 3. Requires some practice and creativity

• Verification by induction may run into issues

• Example,

• Guess?

•

• Check

• Is the guess wrong? Not asymptotically, can fix it up by adding
lower-order terms

• New guess (why minus?)

•

• must be chosen large enough to satisfy boundary conditions

T(n) = 2T(n/2) + 1

T(n) ≤ cn
T(n) ≤ cn + 1 ≰ cn for any c > 0

T(n) ≤ cn − d
T(n) ≤ cn − 2d + 1 ≤ cn − d for any d ≥ 1

c

Floors and Ceilings
• Why doesn’t floors and ceilings matter?

• Suppose

• First, for upper bound, we can safely overestimate

•

• Second, we can define a function , so that
satisfies

 
  
  

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

S(n) = T(n + α) ≤ 2T(n/2 + α/2 + 1) + n + α
= 2T(n/2 + α − α/2 + 1) + n + α
= 2S(n/2 − α/2 + 1) + n + α
≤ 2S(n/2) + n + 2, for α = 2

Floors & Ceilings Don’t Matter
• Why doesn’t floors and ceilings matter?

• Suppose

• First, for upper bound, we can safely overestimate

•

• Second, we can define a function , so that
satisfies

• Setting works

• Finally, we know

•

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

α = 2

S(n) = O(n log n) = T(n + 2)

T(n) = O((n − 2)log(n − 2)) = O(n log n)

Can Assume Powers of 2
• Why doesn’t taking powers of 2 matter?

• Running time is monotonically increasing

• Suppose is not a power of 2, let be such that
; then

• We can upper bound our asymptotic using and lower bound
using

• In particular, let

• And

• That is,

T(n)

n n′� = 2ℓ

n ≤ n′� ≤ 2n

n′�
n′�/2

T(n) ≤ T(n′�)

T(n) ≥ T(n′�/2)

T(n) = Θ(T(n′�))

• Recall the challenge recurrence  
 

 

• Analyzing how quickly the problem size goes down

•

• What is for this to be a small constant?

• (number of levels)

• How much work at each level?

• , verify by induction

T(n) = nT(n + n

n → n1/2 → n1/4 → … → n1/2L

L
L = log log n

O(n)
T(n) = Θ(n log log n)

Recall Challenge Recurrence

Extra: Verify by Induction
• Suppose I want to prove that the recurrence

 evaluates to

• I need to show that for all sufficiently large , I can find a constant ,
such that

• Base case?

• (doesn’t work yet, let us fix it up later)

• Assume holds for all

•  
  
 if

T(n) = 2T(n/2) + 4n, T(1) = 8 T(n) = O(n log n)

n c
T(n) ≤ c ⋅ n log n

T(1) = 8 ≰ c log 1 = 0

< n

T(n) ≤ 2(c(n/2)log(n/2)) + n
= cn log(n/2) + n
= cn log n − cn log 2 + n ≤ cn log n c ≥ 1

Extra: Verify by Induction
• What about the base case?

• As long as , our recurrence does not depend on ;

• We can just use as the base case our induction!

• Thus our induction holds for all and

• This is how we usually verify our recurrences and prove they are
correct: by induction.

n ≥ 4 T(1)
T(2)

T(2) = 2T(1) + 8 = 24 ≤ c log 2 for c > 24
n ≥ 2 c > 24

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

• CLRS Algorithms book

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

