
Recursion Tree Method 
and Selection



Check in and Reminders
• Assignment 3 was due last night 
• If you are taking a late day,  I have office hours today from 

12.30-2 pm @ CS common room 
• I also have office hours Thursday 1-2 pm @ my office 
• Friday office hours on GLOW
• Come see me if you have any questions, or just to chat! 

• I always want to know how my students are doing
• Assignment 4 is out (Divide and Conquer) 

• Use strong induction to prove correctness of divide and 
conquer algorithms 

• Jeff Erickson’s book has really good coverage of recursion 
trees and analyzing recurrences 



General Recursion Trees
• Consider a divide and conquer algorithm that  

• spends  time on non-recursive work and makes  
recursive calls, each on a problem of size  

• Up to constant factors (which we hide in , the running time of 
the algorithm is given by what recurrence? 

•  

• Because we care about asymptotic bounds, we can assume base 
case is a small constant, say  

O( f(n)) r
n/c

O())

T(n) = rT(n/c) + f(n)

T(n) = 1



General Recursion Trees

A recursion tree for the recurrence T(n) = rT(n /c) + f(n)

• For each , the th level of tree has exactly  nodes 

• Each node at level  has cost  

i i ri

i, f(n/ci)



General Recursion Trees
• Running time  of a recursive algorithm is the sum of all the 

values (sum of work at all nodes at each level) in the recursion tree 

• For each , the th level of tree has exactly  nodes 

• Each node at level  has cost   

•
Thus,  

• Here  is the depth of the tree 

• Number of leaves in the tree:     

• Cost at leaves: 

T(n)

i i ri

i, f(n/ci)

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

L = logc n

rL = nlogc r

O(nlogc rf(1))



General Recursion Trees
• Running time  of a recursive algorithm is the sum of all the 

values (sum of work at all nodes at each level) in the recursion tree 

• For each , the th level of tree has exactly  nodes 

• Each node at level  has cost   

•
Thus,  

• Here  is the depth of the tree 

• Number of leaves in the tree:     (why?) 

• Cost at leaves: 

T(n)

i i ri

i, f(n/ci)

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

L = logc n

rL = nlogc r

O(nlogc rf(1))

rL = rlogc n = (2log2 r)logc n = (2logc n)log2 r = (2log2 n)
log2 r
log2 c = nlogc r



Easy Cases to Evaluate

• Decreasing series.  If the series decays exponentially (every term 
is a constant factor smaller than previous): cost at root dominates:  
                 

• Equal. If all terms in the series are equal:  
                

• Increasing series. If the series grows exponentially (every terms is 
constant factor larger than previous): the cost at leaves dominates:  
               

T(n) =
L

∑
i=0

ri ⋅ f(n/ci)

T(n) = O( f(n))

T(n) = O( f(n) ⋅ L) = O( f(n)log n)

T(n) = O(nlogc r)



In Class Exercises
• Take a few minutes to draw recursions trees for each of the following 

recurrences 

• Then break into small groups (~size 3) and discuss which of the 
three cases each of them fall into  
 

•  

•

T(n) = 2(Tn/2) + n2

T(n) = 3T(n/2) + n



[Akra–Bazzi ’98]: Master Theorem
(Master Theorem.)  Let  are constants and . Let 

 be defined on the nonnegative integers by the recurrence 
, where we interpret  as .  

 
Then  can be bounded asymptotically as follows. 

• If  for some constant , then  

• If , then  

• If , for some constant , and if 
 for some constant  and all sufficiently large 

, then 

a ≥ 1, b > 1 f(n) ≥ 0
T(n)
T(n) = r (n/c) + f(n) n/c ⌊n/c⌋ or ⌈n/c⌉

T(n)

f(n) = nlogc r−ϵ ϵ > 0 T(n) = Θ(nlogc r)

f(n) = Θ(nlogc r) T(n) = Θ(nlogc r log n)

f(n) = Ω(nlogc r+ϵ) ϵ > 0
rf(n/b) ≤ c0 f(n) c0 < 1
n T(n) = Θ( f(n))



Master Theorem Broken Down
Intuitively Master theorem is comparing work at root versus work at 
leaves  of the recursion tree: 

Three cases as before: 

• Work at leaves dominates, then  

• Work is same at root and leaves  (and thus throughout the tree), 
then  (work times number of levels) 

• Work at root dominates, then 

f(n)
Θ(nlogc r)

T(n) = Θ(nlogc r)
f(n)

T(n) = Θ( f(n)log n)
T(n) = Θ( f(n))



Fun: Pancake Sorting
• You are given a stack of  pancakes of different sizes 

• Goal. sort the pancakes so that smaller pancakes are on top of 
larger pancakes 

• Only operation you can perform is a flip 

• Insert a spatula under the top  pancakes and flip them all over 

• Describe an algorithm to sort an arbitrary stack of n pancakes using 
 flips. 

• Best known lower and upper bounds  
on # of flips:  

• Famous software developer wrote a paper  
on this as an undergrad… 

n

k

O(n)

1.07n and 1.64n



Selection: Problem Statement
Given an array  of size , find the th smallest element for 
any  

• Special cases: min , max :  

• Linear time,    

• What about median ? 

• Sorting:  compares 

• Binary heap:  compares 

Question.  Can we do it in  compares? 

• Surprisingly yes.  

• Selection is easier than sorting. 

A[1,…, n] n k
1 ≤ k ≤ n

k = 1 k = n
O(n)

k = ⌊n + 1⌋/2
O(n log n)

O(n log k)

O(n)



Selection: Problem Statement
Example. Take this array of size 10:  
 

 

Suppose we want to find 4th smallest element 

• If we can find a pivot  from  

• Such that 3/10 of the array is less than  and 6/10 fo the 
array is greater than  

• Then we have found the 4th smallest element! 

• We can return !  

• Else, we partition  around  and recurse

A = 12 |2 |4 |5 |3 |1 |10 |7 |9 |8

p A[1,…n]
p

p

p
A p



Selection Algorithm: Idea
Select : 

If : return  

Else: 

• Choose a pivot ; let  be the rank of  

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)



How to Choose a Good Pivot?
• Recurrence for pivot of rank  

•  

• We don’t know , so assuming the worst: 

•  

• Simplify: use  = length of recursive subproblem 

•  

• For what  do we get a linear solution?

r
T(n) = max{T(r), T(n − r)} + O(n)

r
T(n) = max

1≤r≤n
max{T(r), T(n − r)} + O(n)

ℓ
T(n) = max

1≤ℓ≤n−1
T(ℓ) + O(n)

ℓ



How to Choose a Good Pivot?
 

• If we reduce subproblem size by constant factor each time, 
we get a linear solution 

• That is,  for some constant  

•  for some constant  
• Expands to a decreasing geometric series 
• Largest term at root dominates:  

Take away. 
• We want a pivot that partitions such that where larger subproblem 

is constant factor smaller than   
• If we can find an “approximate median” in linear time, we can 

find the median in linear time as well!

T(n) = max
1≤n−1

T(ℓ) + O(n)

ℓ ≤ αn α < 1
T(n) ≤ T(αn) + O(n) α < 1

T(n) = O(n)

n



Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

n = 54

• Divide the array of size  into  groups of  elements (ignore 
leftovers) 

• Find median of each group 

n ⌈n/5⌉ 5



Finding an Approximate Median

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

38 18 35

43

2328 40 19 31

15

n = 54

medians

• Divide the array of size  into  groups of  elements (ignore 
leftovers) 

• Find median of each group 

n ⌈n/5⌉ 5



Finding an Approximate Median
• Divide the array of size  into  groups of  elements (ignore 

leftovers) 
• Find median of each group  
• Find median of  medians recursively  
• Use median of medians  as pivot

n ⌈n/5⌉ 5

M ← ⌈n/5⌉
M

1029 3738 2 1855 24 3534 36

4422 1152 53 1312 43 420 27

2328 266 40 119 46 4931 8

914 35 54 4830 47 5132 21

3945 1550 25 4116 17 722

median of
medians 38 18 35

43

2328 40 19 31

15

28

n = 54

medians



Visualizing MoM
• In the 5 x n/5 grid, each column represents five consecutive 

elements 

• Imagine each column is sorted top down 

• Imagine the columns as a whole are sorted left-right 

• We don’t actually do this! 

• MoM is the element closest to center of grid



Visualizing MoM
• Red cells (at least ) in size are smaller than  

• If we are looking for an element larger than , we can throw these 
out, before recursing  

• Symmetrically, we can throw out  elements smaller than  if 
looking for a smaller element 

• Thus, the recursive problem size is at most 

3n/10 M
M

3n/10 M

7n/10



How Good is Median of Medians
Claim. Median of medians  is a good pivot, that is, at least th of 
the elements are  and at least th of the elements are . 

Proof. 

• Let  be the size of each group.  

•  is the median of  medians 

• So  of the group medians 

• Each median is greater than 2 elements in its group 

• Thus  elements 

• Symmetrically,  elements. 

M 3/10
≥ M 3/10 ≤ M

g = ⌈n/5⌉
M g

M ≥ g/2

M ≥ 3g/2 = 3n/10
M ≤ 3n/10 ∎



Analysis:  Running Time
• Question.  How to compute median of median recursively?  

• MoM( ): 

• If : return  

• Else: 

• Divide  into  groups 

• Compute median of each group 

• group medians 

• Mom( )

A, n
n = = 1 A[1]

A ⌈n/5⌉

A′ � ←
A′�, ⌈n/5⌉

Not recursive; O(n)

Not recursive; O(n)



• Recurrence just for MoM:

•  

• MoM( ): 

• If : return  

• Else: 

• Divide  into  groups 

• Compute median of each group 

• group medians 

• Mom( )

T(n) = T(n/5) + O(n)
A, n

n = = 1 A[1]

A ⌈n/5⌉

A′ � ←
A′�, ⌈n/5⌉

Analysis:  Running Time



Analysis:  Overall
Select : 

If : return  

Else: 

• Choose a pivot ; let  be the rank of  

• Partition(  

• If , return  

• Else: 

• If : Select  

• Else: Select 

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p

k < r (A<p, k)

(A>p, k − r)

T(n /5) + O(n)

Larger subproblem 
has size ≤ 7n /10

Overall:   T(n) = T(n/5) + T(7n/10) + O(n)



Selection Recurrence
• Okay, so we have a good pivot 

• We are still doing two recursive calls 

•  

• Key: total work at each level still goes down! 

• Decaying series gives us : 

T(n) ≤ T(n/5) + T(7n/10) + O(n)

T(n) = O(n)



Why the Magic Number 5?
• What was so special about 5 in our algorithm? 

• It is the smallest odd number that works! 

• (Even numbers are problematic for medians) 

• Let us analyze the recurrence with groups of size 3 

•  

• Work is equal at each level of the tree! 

•

T(n) ≤ T(n/3) + T(2n/3) + O(n)

T(n) = Θ(n log n)



Theory vs Practice
• -time selection by [Blum–Floyd–Pratt–Rivest–Tarjan 1973] 

• Does  compares 

• Upper bound:  

• [Dor–Zwick 1995]  compares 

• Lower bound:  

• [Dor–Zwick 1999]  compares. 

• Constants are still too large for practice 

• Random pivot works well in most cases! 

• We will analyze this when we do randomized algorithms

O(n)
≤ 5.4305n

≤ 2.95n

≥ (2 + 2−80)n



Guess & Verify Recurrences
• Method 3.  Requires some practice and creativity 

• Verification by induction may run into issues 

• Example,  

• Guess? 

•   

• Check  

• Is the guess wrong?  Not asymptotically, can fix it up by adding 
lower-order terms 

• New guess  (why minus?) 

•    

•  must be chosen large enough to satisfy boundary conditions

T(n) = 2T(n/2) + 1

T(n) ≤ cn
T(n) ≤ cn + 1 ≰ cn for any c > 0

T(n) ≤ cn − d
T(n) ≤ cn − 2d + 1 ≤ cn − d for any d ≥ 1

c



Floors and Ceilings
• Why doesn’t floors and ceilings matter? 

• Suppose  

• First, for upper bound, we can safely overestimate 

•  

• Second, we can define a function , so that  
satisfies  

 
          
          
         

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

S(n) = T(n + α) ≤ 2T(n/2 + α/2 + 1) + n + α
= 2T(n/2 + α − α/2 + 1) + n + α
= 2S(n/2 − α/2 + 1) + n + α
≤ 2S(n/2) + n + 2, for α = 2



Floors & Ceilings Don’t Matter
• Why doesn’t floors and ceilings matter? 

• Suppose  

• First, for upper bound, we can safely overestimate 

•  

• Second, we can define a function , so that  
satisfies  

• Setting  works 

• Finally, we know  

•

T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + O(n)

T(n) ≤ 2T(⌈n/2⌉) + n ≤ 2T(n/2 + 1) + n

S(n) = T(n + α) S(n)
S(n) ≤ S(n/2) + O(n)

α = 2

S(n) = O(n log n) = T(n + 2)

T(n) = O((n − 2)log(n − 2)) = O(n log n)



Can Assume Powers of 2
• Why doesn’t taking powers of 2 matter? 

• Running time  is monotonically increasing 

• Suppose  is not a power of 2, let  be such that 
; then 

• We can upper bound our asymptotic using  and lower bound 
using  

• In particular, let  

• And  

• That is, 

T(n)

n n′� = 2ℓ

n ≤ n′� ≤ 2n

n′�
n′�/2

T(n) ≤ T(n′�)

T(n) ≥ T(n′�/2)

T(n) = Θ(T(n′�))



• Recall the challenge recurrence  
 

 

• Analyzing how quickly the problem size goes down 

•  

• What is  for this to be a small constant? 

•   (number of levels) 

• How much work at each level?  

• , verify by induction

T(n) = nT( n + n

n → n1/2 → n1/4 → … → n1/2L

L
L = log log n

O(n)
T(n) = Θ(n log log n)

Recall Challenge Recurrence



Extra: Verify by Induction
• Suppose I want to prove that the recurrence

 evaluates to  

• I need to show that for all sufficiently large , I can find a constant , 
such that  

• Base case?  

•  (doesn’t work yet, let us fix it up later) 

• Assume holds for all  

•  
          
          if 

T(n) = 2T(n/2) + 4n, T(1) = 8 T(n) = O(n log n)

n c
T(n) ≤ c ⋅ n log n

T(1) = 8 ≰ c log 1 = 0

< n

T(n) ≤ 2(c(n/2)log(n/2)) + n
= cn log(n/2) + n
= cn log n − cn log 2 + n ≤ cn log n c ≥ 1



Extra: Verify by Induction
• What about the base case?  

• As long as , our recurrence does not depend on ; 

• We can just use  as the base case our induction! 
 

• Thus our induction holds for all  and  

• This is how we usually verify our recurrences and prove they are 
correct:  by induction.

n ≥ 4 T(1)
T(2)

T(2) = 2T(1) + 8 = 24 ≤ c log 2 for c > 24
n ≥ 2 c > 24
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