Recursion Tree Method
and Selection

Check in and Reminders

Assignment 3 was due last night

It you are taking a late day, | have office hours today from
12.30-2 pm @ CS common room

| also have office hours Thursday 1-2 pm @ my office

Friday office hours on GLOW

Come see me if you have any guestions, or just to chat!
| always want to know how my students are doing

Assignment 4 is out (Divide and Conquer)

* Use strong induction to prove correctness of divide and
conqguer algorithms

* Jeff Erickson’s book has really good coverage of recursion
trees and analyzing recurrences

(General Recursion Trees

Consider a divide and conquer algorithm that

« spends O(f(n)) time on non-recursive work and makes r
recursive calls, each on a problem of size n/c

Up to constant factors (which we hide in O()), the running time of
the algorithm is given by what recurrence”

e T(n)=rT(n/c)+ f(n)

Because we care about asymptotic bounds, we can assume base
case is a small constant, say T(n) = 1

(General Recursion Trees

f(n) fn)
TN~ :
fn/c) f(n/c) f(n/c) fn/c) r - f(n/c)
74>§r 74\%1‘ #%r #Xr +
fov/e) | fov/e) | fve) | fn/e) |; r2 - f(n/c2)
2A5) 2A5) 2A5] 2A5)
b | 2A5)x 2A %) 2A5Yx
+

oo o))))) i)

A recursion tree for the recurrence T(n) = rT(n/c) + f(n)

M -
M -
—_ -
(A -
- -

. For each i, the ith level of tree has exactly 7' nodes

« Each node at level i, has cost f(n/ci)

(General Recursion Trees

Running time T(n) of a recursive algorithm is the sum of all the
values (sum of work at all nodes at each level) in the recursion tree

For each i, the ith level of tree has exactly 7' nodes

Each node at level i, has cost f(n/ci)
L

Thus, T(n) =)" i+ f(n/c’)

i=0
Here L = log.n is the depth of the tree

Number of leaves in the tree: L = nlog”

Cost at leaves: O(n'°%"f(1))

(General Recursion Trees

Running time T(n) of a recursive algorithm is the sum of all the
values (sum of work at all nodes at each level) in the recursion tree

For each i, the ith level of tree has exactly 7' nodes

Each node at level i, has cost f(n/ci)
L

Thus, T(n) =)" i+ f(n/c’)

i=0
Here L = log.n is the depth of the tree

Number of leaves in the tree: rt = n'%&" (why?)

Cost at leaves: O(n'°%"f(1))

logy r

10g27" — (legzn)logzc — nlogcr

I’L — rlogcn — (210g2 ,,)logcn — (2logc n)

Easy Cases to Evaluate

L
T(n)=) r'-f(nlc’)
i=0
Decreasing series. If the series decays exponentially (every term
IS a constant factor smaller than previous): cost at root dominates:

I(n) = O(f(n))

Equal. If all terms in the series are equal:

I(n) = O(f(n) - L) = O(f(n)log n)

Increasing series. If the series grows exponentially (every terms is
constant factor larger than previous): the cost at leaves dominates:

T(n) = O(n'°%")

In Class Exercises

Take a few minutes to draw recursions trees for each of the following
recurrences

Then break into small groups (~size 3) and discuss which of the
three cases each of them fall into

T(n) = 2(Tn/2) + n?

T(n) =3T(n/2)+n

|[Akra—Bazzi '98]. Master Theorem

(Master Theorem.) Leta > 1, b > 1 are constants andf(n) > 0. Let
T(n) be defined on the nonnegative integers by the recurrence

T(n) = r (n/c) + f(n), where we interpret n/c as |n/c| or [n/c].

Then T(n) can be bounded asymptotically as follows.
If f(n) = n'°%"~€ for some constant € > 0, then T(n) = O(n'°%")
f f(n) = O(n'°&"), then T(n) = O(n'°%" log n)

If f(n) = Q(n'°8"+¢), for some constant € > 0, and if

rf(n/b) < cyf(n) for some constant ¢, < 1 and all sufficiently large
n,then T(n) = O(f(n))

Master Theorem Broken Down

Intuitively Master theorem is comparing work at root f(n)versus work at
leaves O(n!°%") of the recursion tree:

Three cases as before:
. Work at leaves dominates, then T(n) = @(n'°&")

« Work is same at root and leaves f(7n) (and thus throughout the tree),
then T(n) = O(f(n)log n) (work times number of levels)

« Work at root dominates, then T(n) = O(f(n))

Fun: Pancake Sorting

You are given a stack of n pancakes of different sizes

Goal. sort the pancakes so that smaller pancakes are on top of
larger pancakes

Only operation you can perform is a flip
« Insert a spatula under the top k pancakes and flip them all over

Describe an algorithm to sort an arbitrary stack of n pancakes using

O(n) flips.

Best known lower and upper bounds N\

on # of flips: 1.07n and 1.64n

Famous software developer wrote a paper

on this as an undergrad... yd

Selection: Problem Statement

Given an array Al 1,..., n] of size n, find the kth smallest element for
any 1 <k<n

« Special cases: mink =1, maxk = n:
e Lineartime, O(n)

« What about mediank = |n + 1[/27?
« Sorting: O(nlog n) compares

 Binary heap: O(nlog k) compares

Question. Can we do it in O(n) compares?
Surprisingly yes.

e Selection is easier than sorting.

Selection: Problem Statement

Example. Take this array of size 10:

A=12|214|5|3|1|10|7]9]|8
Suppose we want to find 4th smallest element

« If we can find a pivot p from A[1,...n]

« Such that 3/10 of the array is less than p and 6/10 fo the
array is greater than p

e Then we have found the 4th smallest element!

e We can return p!

« Else, we partition A around p and recurse

Selection Algorithm: Idea

Select (A, k):

f |[A| = 1:return A[1]

Else:
« Choose apivotp < All,...,n]; let r be the rank of p
. 7, A<p, A>p « Partition((A, p)

e fk==rretunp

* Else:
. Ifk <r: Select(A_,, k)
. Else: Select(A.,,k—r)

>p?

How to Choose a Good Pivot?

« Recurrence for pivot of rank r
e T(n) =max{1T(r), T(n—r)} + O(n)
« We don't know r, so assuming the worst:

., I'(n) = max max{7T(r),T(n—r)} + O(n)

1<r<n

« Simplify: use £ = length of recursive subproblem

. I'(n)= max T()+ On)

1<t/<n—1

« For what £ do we get a linear solution?

How to Choose a Good Pivot?

T(n) = max 7T(¢) + O(n)

1<n—1

* |f we reduce subproblem size by constant factor each time,
we get a linear solution

« Thatis, £ < an for some constant a < 1

e T(n) < T(an)+ O(n) for some constant a < 1

* Expands to a decreasing geometric series

« Largest term at root dominates: T(n) = O(n)
Take away.

 We want a pivot that partitions such that where larger subproblem
is constant factor smaller than n

* |f we can find an “approximate median” in linear time, we can
find the median in linear time as well!

Finding an Approximate Median

. Divide the array of size n into [n/5] groups of 5 elements (ignore
eftovers)

* Find median of each group

ORORCNCONONCORORORORINC)
ORCORCNONCONORORORORONC)
ORCORONCRCONORORORIROR
WOOPOO®OEOE®®®
ORORCONONONORORORND

Finding an Approximate Median

. Divide the array of size n into [n/5] groups of 5 elements (ignore
eftovers)

* Find median of each group

n = 54

Finding an Approximate Median

. Divide the array of size n into [n/5] groups of 5 elements (ignore
eftovers)

* Find median of each group
 Find M < median of [n/5] medians recursively)

« Use median of medians M as pivot 7

median of @ @ @

medians

\ o

Visualizing MoM

In the 5 x n/5 grid, each column represents five consecutive
elements

magine each column is sorted top down

magine the columns as a whole are sorted left-right
* We don't actually do this!

MoM is the element closest to center of grid

— N\C o N\C NN N N NN N NN O OO\
\. J \\ J \\ J \\ J \\ J \\ J \\ J \\ J \\ J \\ J \\ J \\ J \\ J \\ J \\ J \\ /
1 N\C | C L NC N N N N N NN YN N
\. VAN J \\ J\\ VAN VAN J \\ VAN J\\ VAN J\\ J \\ VAN J\\ J \\ J\\ J
a)
— —
1 NC L YC L NC L NC N N N TN N N OO YN
\. J\\ J\\ J \\ J\\ J\\ J\\ J\\ J \\ J\\ J\\ J \\ J\\ J \\ J\\ J\\ J
N\ | N\C N TN N NN N NN NN\
QS5 0505 0505050505000 00 05050000

Visualizing MoM

Red cells (at least 3n/10) in size are smaller than M

If we are looking for an element larger than M, we can throw these
out, before recursing

Symmetrically, we can throw out 3n/10 elements smaller than M if
looking for a smaller element

Thus, the recursive problem size is at most 7n/10

!
r V4 2 Y4 Y4 Y4 Y4 Y4 N\ (aY4) !
:r \(\(\(\(\(\()
!
_ J J\ J J VAN J\ VAN VAN J'L L I I L)))
e Yo Yo Yo Yo Yamm Yo Y Yo ¥ Z < - -
:r \(\(\(\(\(\(D
!
. J o J . J o J o J o J o J . J . J

' 4 "\ 7 a V4 \/ N\~ a V4 N\ N/)

|

SR A G LG L G L G A G A G A 4
___ . J \\ J\\ J\\ J\\ J_ J_ J_ y
r aYd N[aYd N\)(w[\ 7]r "\ 7 aYd aYd aYd Y4 aYd aYd N
. J_ J J_ J_ J J\. . J\. J\. J_ J_ J_ J_ J_ J
4 \/ 1(N/ Y4 J[1[Y4 Jf Y4 Y4 Y4 N/ Y4 Y4 \/ N
_ J_ J J_ J_ J J_ . J\L J_ J_ J_ J_ J_ J_ J

How Good is Median of Medians

Claim. Median of medians M is a good pivot, that is, at least 3/10th of
the elements are > M and at least 3/10th of the elements are < M.

Proof.
« Let g = [n/5] be the size of each group.
« M is the median of g medians
« SoM > g/2 of the group medians
* Each median is greater than 2 elements in its group

e ThusM > 3g/2 = 3n/10 elements
o Symmetrically, M < 3n/10 elements. B

Analysis: Running Time

* Question. How to compute median of median recursively?

« MoM(A, n):
e Ifn==1 return A[l] Not recursive; O(n)
e [Else: Not recursive; O(n)

. Divide A into [n/5] groups
 Compute median of each group
« A’ « group medians

e Mom(A’, [n/5])

Analysis: Running Time

- Recurrence just for MoM:

e T(n)=Tmn/5)+ On)

« MoM(A, n):

e Ifn==1:return A[1]

* Else:
. Divide A into [n/5] groups
 Compute median of each group
« A’ « group medians

e Mom(A’, [n/5])

Analysis: Overall

Select (A, k):

f |[A| = 1:return A[1] T(n/5) + O(n)

Else:
« Choose apivotp < All,...,n]; let r be the rank of p

. 1,A_), Ay, < Partition((4, p)

<p?

. — Larger subproblem
fhk==rretunp has size < 7n/10
¢ LElse:
. Ifk <r: Select(A_,, k)
. Else: Select(A.,,k—r)

>p?

Overall: T(n) = T(n/5) + T(7n/10) + O(n)

Selection Recurrence

* (Okay, so we have a good pivot

* We are still doing two recursive calls

e« T(n) <Tn/5)+ T(7n/10) 4+ O(n)

* Key: total work at each level still goes down!

« Decaying series gives us : T(n) = O(n)

n/5 (\7n/10

AN / N\

n/25 7n/50 /n/50 49n/100

Why the Magic Number 57?

 What was so special about 5 in our algorithm?
* |tis the smallest odd number that works!
 (Even numbers are problematic for medians)
* Let us analyze the recurrence with groups of size 3
e« T(n) <T/3)+T(2n/3)+ O(n)
 Work is equal at each level of the tree!
e T(n) =0O(nlogn)

Theory vs Practice

O(n)-time selection by [Blum-Floyd-Pratt-Rivest-Tarjan 1973]
e Does < 5.4305n compares
Upper bound:
o [Dor—Zwick 1995] < 2.95n compares
Lower bound:
e [Dor-Zwick 1999] > (2 + 2780)n compares.
Constants are still too large for practice
Random pivot works well in most cases!

 We will analyze this when we do randomized algorithms

Guess & Verify Recurrences

* Method 3. Requires some practice and creativity
e Verification by induction may run into issues
o Example, T(n) = 2T(n/2) + 1
e (Guess?
e T(n) <cnm
e CheckT(n) <cn+1 <« cnforanyc >0

* |sthe guess wrong? Not asymptotically, can fix it up by adding
lower-order terms

« New guess T(n) < cn — d (why minus?)
e T(n)<cn—2d+1 <cn—dforanyd > 1

e ¢ must be chosen large enough to satisty boundary conditions

Floors and Cellings

 Why doesn't floors and ceilings matter?
« Suppose T(n) =T(|n/2])+ T(|n/2]) + O(n)
* First, for upper bound, we can safely overestimate

e T(n) <2T([n/2])+n<2T(n/12+1)+n

« Second, we can define a function S(n) = T(n + «), so that S(n)
satisfies S(n) < S(n/2) + O(n)

Sm)y=Th+a) <2Tn/2+al2+1)+n+a
=2Tn2+a—-al2+1)+n+a
=252 —al/l2+1)+n+a
<285(n/2)+n+2, fora=72

Floors & Celilings Don’t Matter

 Why doesn't floors and ceilings matter?
« Suppose T(n) =T(|n/2])+ T(|n/2]) + O(n)
* First, for upper bound, we can safely overestimate

e T(n) <2T([n/2])+n<2T(n/12+1)+n

« Second, we can define a function S(n) = T(n + «), so that S(n)
satisfies S(n) < S(n/2) + O(n)

« Setting a = 2 works
« Finally, we know S(n) = O(nlogn) = T(n + 2)

e« T(n) = 0O((n—2log(n—2)) =Omlogn)

Can Assume Powers of 2

Why doesn’t taking powers of 2 matter?

Running time T(n) is monotonically increasing

Suppose 1 is not a power of 2, let n’ = 2¢ be such that
n <n'<2n; then

We can upper bound our asymptotic using n’ and lower bound
using n’/2

In particular, let T(n) < T(n’)
And T(n) > T(n'/2)
Thatis, T(n) = O(T(n'))

Recall Challenge Recurrence
* Recall the challenge recurrence

T(n) = \/ZT(\/Z + n

* Analyzing how quickly the problem size goes down

L
. n_)n1/2_)n1/4_).“_>n1/2

« What is L for this to be a small constant?
« L =loglogn (number of levels)
« How much work at each level? O(n)

« T(n) =0O(nloglogn), verify by induction

Extra: Verity by Induction

Suppose | want to prove that the recurrence
T(n) =2T(n/2) +4n,T(1) = 8 evaluates to T(n) = O(nlogn)

| need to show that for all sufficiently large n, | can find a constant c,
suchthat T(n) < c -nlogn

Base case”?
« T(1) =8 £ clog1 = 0 (doesn’t work yet, let us fix it up later)
Assume holds for all < n

T(n) < 2(c(n/2)log(n/2)) +n
= cnlog(n/2)+n
=cnlogn —cnlog2+n <cnlognifc > 1

Extra: Verity by Induction

What about the base case?
As long as n > 4, our recurrence does not depend on T(1);

We can just use 7(2) as the base case our induction!
12) =2T(1)+8 =24 <clog2forc > 24

Thus our induction holds for allnm > 2 and ¢ > 24

This is how we usually verify our recurrences and prove they are
correct: by induction.

Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdi/

04GreedyAlgorithmsl.pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

 CLRS Algorithms book

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

