

Depth-First Search and Directed Graphs

Announcements/ Reminders

- Review. Problem Set Advice handout
- Can we use results proved in class in assignment solutions?
 - Yes
- **Homework 0 Feedback:** check for annotated comments in PDF along with text box comments, preview of future grading
- Look at [Homework 0 Sample Solutions](#) posted on [GLOW](#)
- Pay close attention to feedback: some proofs were not proofs
- **Discussion:**
 - Geometric series question
 - Induction question

Story So Far

- Breadth-first search
- Using breadth-first search for connectivity
- Using breadth-first search for testing bipartiteness

BFS (G, s):

Put s in the **queue** Q

While Q is not empty

 Extract v from Q

 If v is unmarked

 Mark v

 For each edge (v, w) :

 Put w into the **queue** Q

Generalizing BFS: Whatever-First

If we change how we store the explored vertices (the data structure we use), it changes how we traverse

Whatever-First-Search (G, s):

Put s in the **bag**

While **bag** is not empty

Extract v from **bag**

If v is unmarked

Mark v

For each edge (v, w) :

Put w into the **bag**

We can optimize this algorithm by checking whether the node w is marked before we place it the bag.

Depth-first search: when bag is a **stack**, not queue

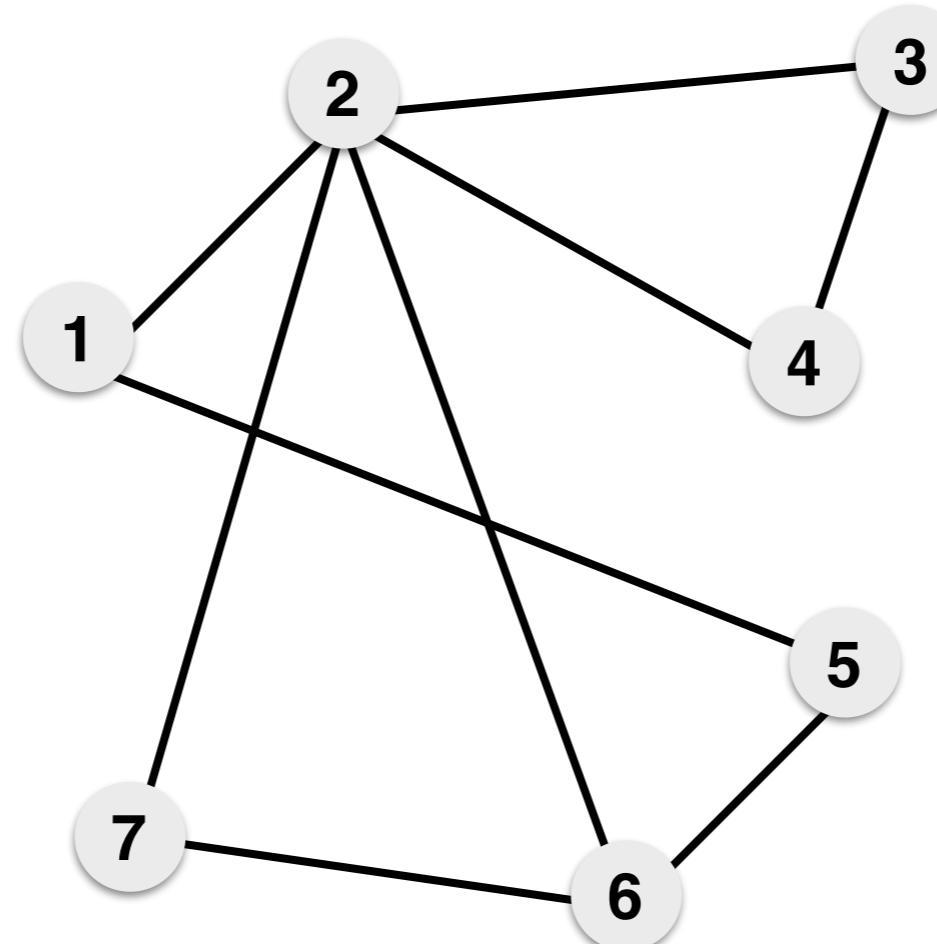
Depth-First Search: Recursive

- Perhaps the most natural traversal algorithm
- Can be written **recursively** as well
- Both versions are the same; can actually see the “recursion stack” in the iterative version

Recursive-DFS(u):

```
Set status of  $u$  to marked # discovered  $u$ 
for each edges  $(u, v)$ :
    if  $v$ 's status is unmarked:
        DFS( $v$ )
# done exploring neighbors of  $u$ 
```

Depth-first Search Example



DFS Running Time

- Inserts and extracts to a stack: $O(1)$ time
- For every node v , explore $\text{degree}(v)$ edges
 - $\sum_v \text{degree}(v) = 2m$
- Connected graphs have $m \geq n - 1$ and thus is $O(m)$ and for general graphs, it is $O(n + m)$

ITERATIVEDFS(s):

PUSH(s)

while the stack is not empty

$v \leftarrow \text{POP}$

if v is unmarked

mark v

for each edge vw

PUSH(w)

Depth-First Search Tree

- DFS returns a spanning tree, similar to BFS

DFS-Tree(G, s):

 Put (\emptyset, s) in the stack S

 While S is not empty

 Extract (p, v) from S

 If v is unmarked

 Mark v

$\text{parent}(v) = p$

 For each edge (v, w) :

 Put (v, w) into the stack S

- The spanning tree formed by parent edges in a DFS are usually long and skinny

Depth-First Search Tree

Lemma. For every edge $e = (u, v)$ in G , one of u or v is an ancestor of the other in T .

Proof. Obvious if edge e is in T .

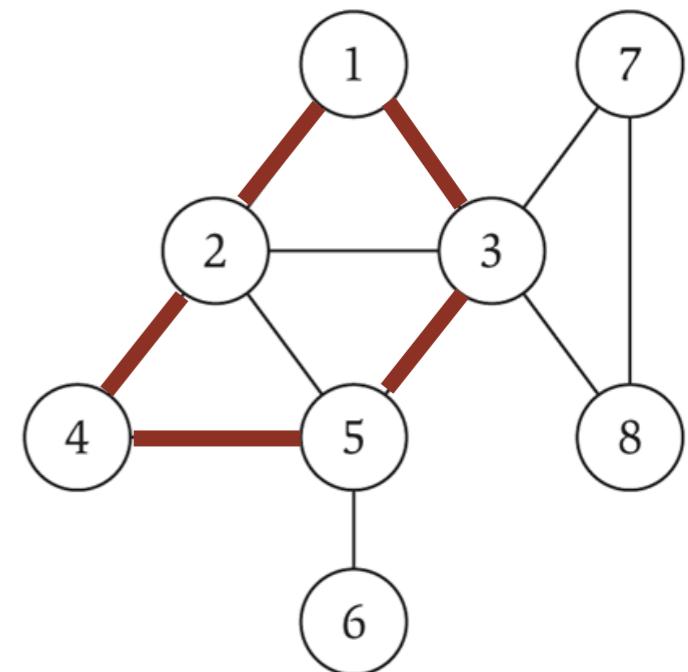
Suppose edge e is not in T . **Without loss of generality**, suppose DFS is called on u before v .

- When the edge u, v is inspected **v must have been already marked visited** (why?)
 - Or else $(u, v) \in T$ and we assumed otherwise
 - Since $(u, v) \notin T$, v is not marked visited during the DFS call on u
 - Must have been marked during a recursive call within $\text{DFS}(u)$
 - Thus v is a descendant of u ■

In-Class Exercise

Question. Given an undirected connected graph G , how can you detect (in linear time) that contains a cycle?

[Hint. Use DFS]



cycle $C = 1-2-4-5-3-1$

In-Class Exercise

Question. Given an undirected connected graph G , how can you detect (in linear time) that contains a cycle?

Idea. When we encounter a back edge (u, v) during DFS, that edge is necessarily part of a cycle (cycle formed by following tree edges from u to v and then the back edge from v to u).

Cycle-Detection-DFS(u):

Set status of u to marked # discovered u
for each edges (u, v) :

 if v 's status is unmarked:

 DFS(v)

 else # found an edge to a marked node
 found a back edge, report a cycle!

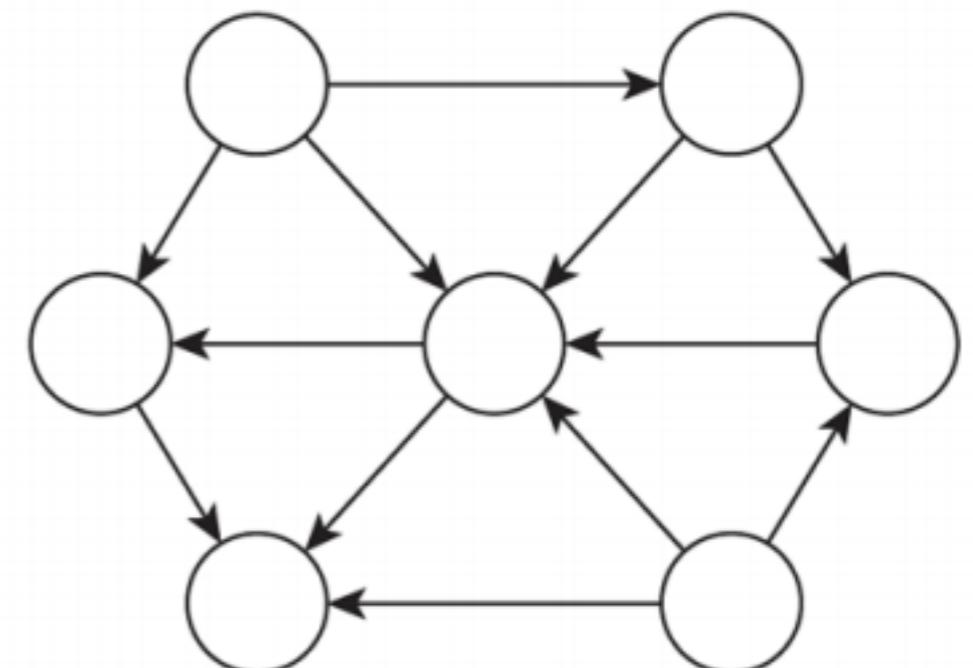
done exploring neighbors of u

Directed Graphs

Notation. $G = (V, E)$.

- Edges have “orientation”
- Edge (u, v) or sometimes denoted $u \rightarrow v$, leaves node u and enters node v
- Nodes have “in-degree” and “out-degree”
- No loops or multi-edges (why?)

Terminology of graphs extend to directed graphs: directed paths, cycles, etc.



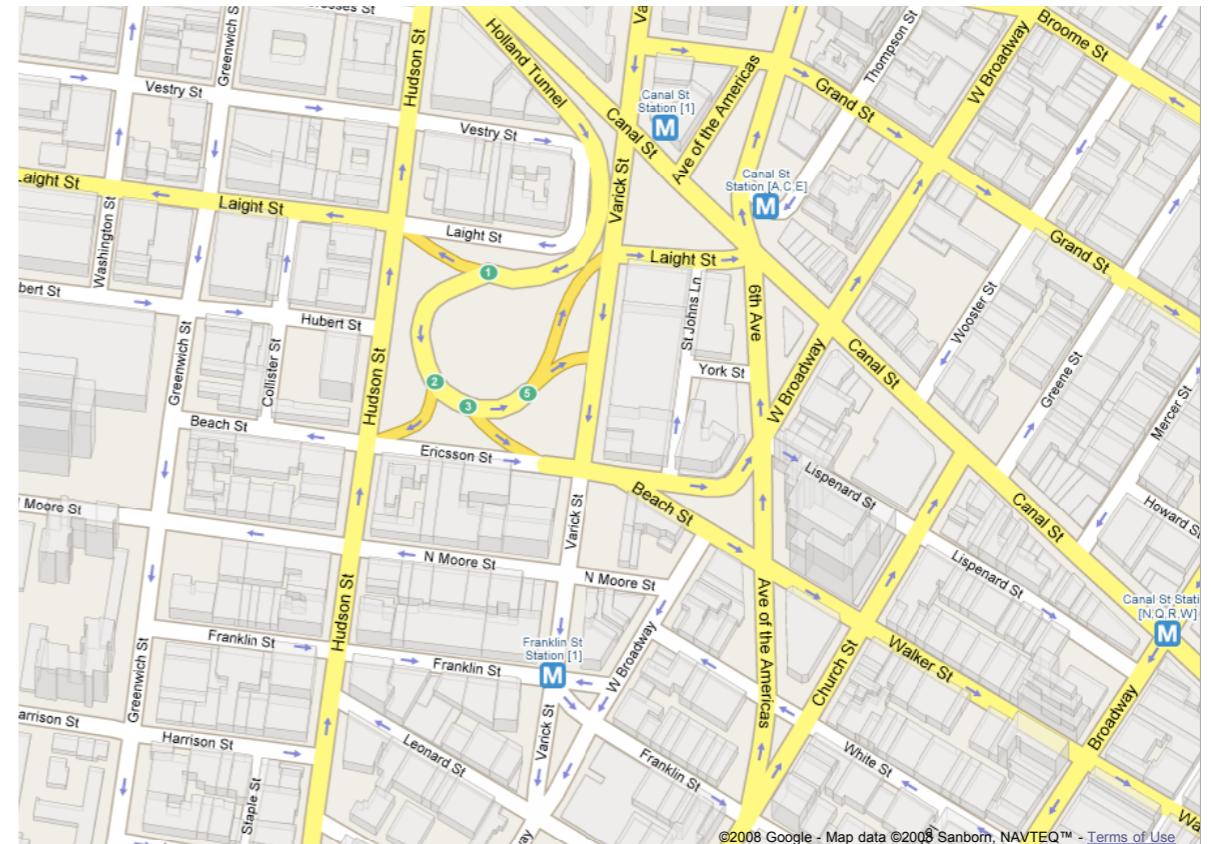
Directed Graphs in Practice

Web graph:

- Webpages are nodes, hyperlinks are edges
- Orientation of edges is crucial
- Search engines use hyperlink structure to rank web pages

Road network

- Road: nodes
- Edge: one-way street

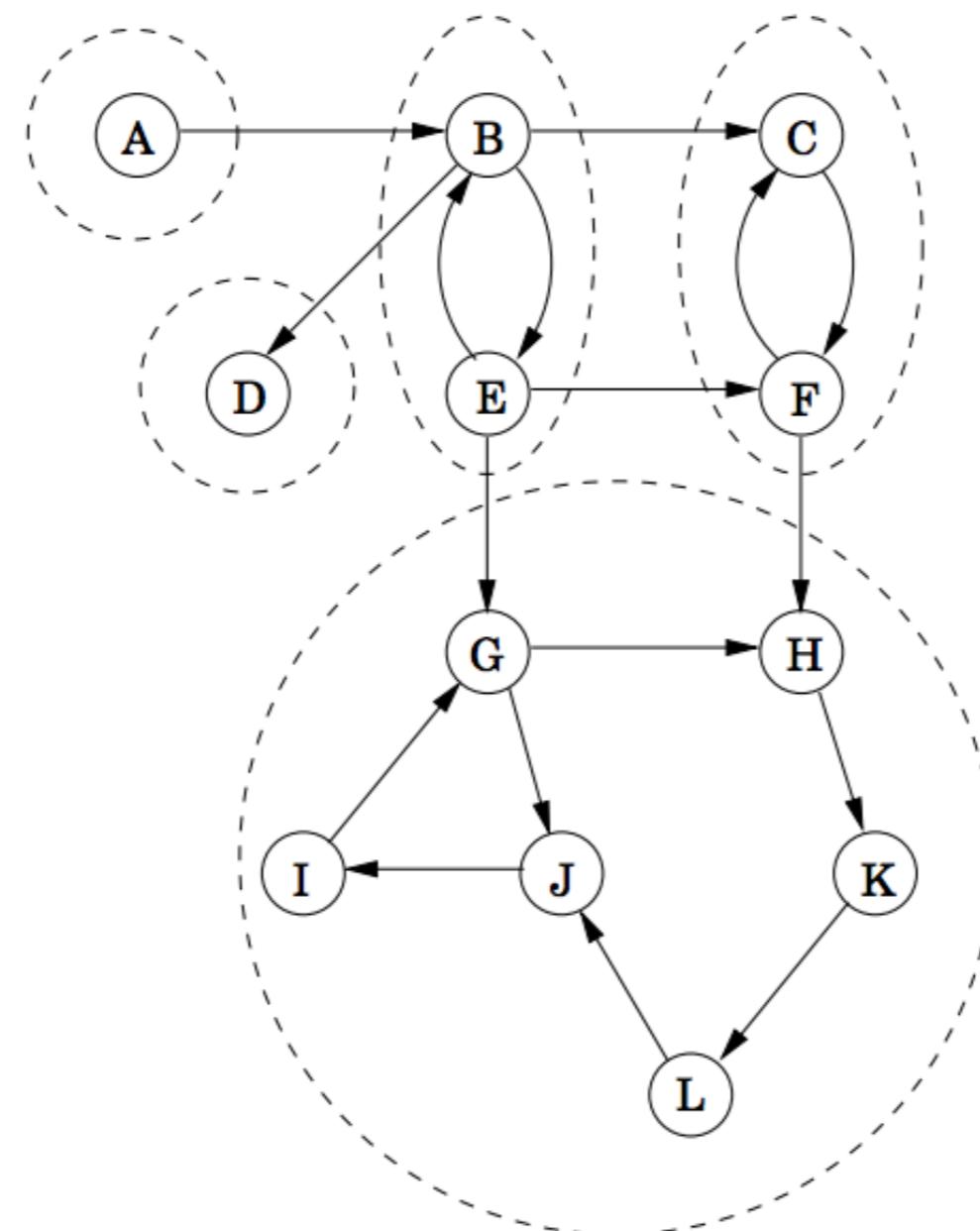


Strong Connectivity & Reachability

Directed reachability. Given a node s find all nodes reachable from s .

- Can use both BFS and DFS. Both visit exactly the set of nodes reachable from start node s .
- **Strong connectivity.** Connected components in directed graphs defined based on mutual reachability. Two vertices u, v in a directed graph G are mutually reachable **if there is a directed path from u to v and from v to u** . A graph G is **strongly connected** if every pair of vertices are mutually reachable
- The mutual reachability relation decomposes the graph into strongly-connected components
- **Strongly-connected components.** For each $v \in V$, the set of vertices mutually reachable from v , defines the strongly-connected component of G containing v .

Strongly Connected Components



Deciding Strongly Connected

First idea. How can we use BFS/DFS to determine strong connectivity? Recall: BFS/DFS on graph G starting at v will identify all vertices reachable from v by directed paths

- Pick a vertex v . Check to see whether every other vertex is reachable from v ;
- Now see whether v is reachable from every other vertex

Analysis

- First step: one call to BFS: $O(n + m)$ time
- Second step: $n - 1$ calls to BFS: $O(n(n + m))$ time
- **Can we do better?**

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph

- Build $G_{\text{rev}} = (V, E_{\text{rev}})$ where $(u, v) \in E_{\text{rev}}$ iff $(v, u) \in E$
- There is a directed path from v to u in G_{rev} iff there is a directed path from u to v in G
- Call $\text{BFS}(G_{\text{rev}}, v)$: Every vertex is reachable from v (in G_{rev}) if and only if v is reachable from every vertex (in G).

Analysis (Performance)

- $\text{BFS}(G, v)$: $O(n + m)$ time
- Build G_{rev} : $O(n + m)$ time. [Do you believe this?]
- $\text{BFS}(G_{\text{rev}}, v)$: $O(n + m)$ time
- Overall, linear time algorithm!

Kosaraju's Algorithm

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph

- Build $G_{\text{rev}} = (V, E_{\text{rev}})$ where $(u, v) \in E_{\text{rev}}$ iff $(v, u) \in E$
- There is a directed path from v to u in G_{rev} iff there is a directed path from u to v in G
- Call $\text{BFS}(G_{\text{rev}}, v)$: Every vertex is reachable from v (in G_{rev}) if and only if v is reachable from every vertex (in G).

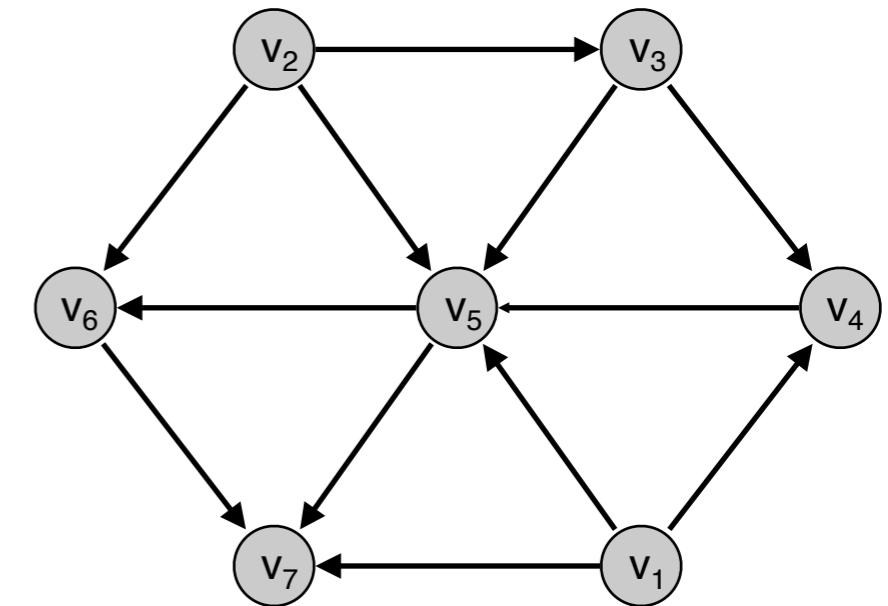
Analysis (Correctness)

- **Claim.** If v is reachable from every node in G and every node in G is reachable from v then G must be strongly connected
- **Proof.** For any two nodes $x, y \in V$, they are mutually reachable through v , that is, $x \rightsquigarrow v \rightsquigarrow y$ and $y \rightsquigarrow v \rightsquigarrow z$ ■

Directed Acyclic Graphs (DAGs)

Definition. A directed graph is acyclic (or a DAG) if it contains no (directed) cycles.

Question. Given a directed graph G , can you detect if it has a cycle in linear time? Can we apply the same strategy (DFS) as we did for undirected graphs?

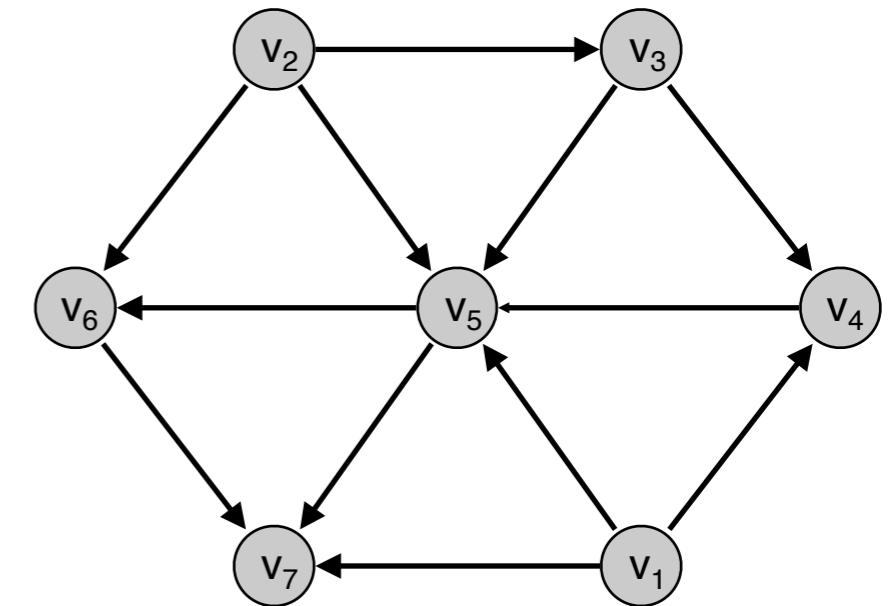


a DAG

Directed Acyclic Graphs (DAGs)

Definition. A directed graph is acyclic (or a DAG) if it contains no (directed) cycles.

Question. Given a directed graph G , can you detect if it has a cycle in linear time? Can we apply the same strategy (DFS) as we did for undirected graphs?



a DAG

Directed Acyclic Graphs (DAGs)

Definition. A directed graph is acyclic (or a DAG) if it contains no (directed) cycles.

Question. Given a directed graph G , can you detect if it has a cycle in linear time? Can we apply the same strategy (DFS) as we did for undirected graphs?

Cycle-Detection-Directed-DFS(u):

Set status of u to marked # discovered u
for each edges (u, v) :

if v 's status is unmarked:

DFS(v)

else if v is marked but not finished
report a cycle!

mark u finished

done exploring neighbors of u