Depth-First Search and
Directed Graphs

Announcements/ Reminders

e Review. Problem Set Advice handout

 (Can we use results proved in class in assignment solutions?
* Yes

* Homework 0 Feedback: check for annotated comments in PDF
along with text box comments, preview of future grading

* ook at Homework O Sample Solutions posted on GLOW

* Pay close attention to feedback: some proofs were not proofs
* Discussion:
* (Geometric series question

* |nduction question

http://cs.williams.edu/~shikha/teaching/spring20/cs256/handouts/Problem_Set_Advice.pdf

Story So Far

e Breadth-first search
e Using breadth-first search for connectivity

e Using bread-first search for testing bipartiteness

BFS (G, s):
Put s 1n the queue Q
While Q 1s not empty
Extract v from Q
If v 1s unmarked
Mark v
For each edge (v, w):
Put w 1nto the queue Q

Generalizing BFS: Whatever-First

It we change how we store the explored vertices (the data structure we
use), it changes how we traverse

Whatever-First-Search (G, s):
Put s 1n the bag
While bag 1s not empty

We can optimize this algorithm by
Extract v from bag checking whether the node w is marked

If v is unmarked before we place it the bag.

Mark v
For each edge (v, w):
Put w into the bag

Depth-first search: when bag is a stack, not queue

Depth-First Search: Recursive

* Perhaps the most natural traversal algorithm
* (Can be written recursively as well

* Both versions are the same; can actually see the “recursion stack”
INn the iterative version

Recursive-DFSCu):
Set status of u to marked
for each edges (u, v):
1f v's status 1s unmarked:
DFS(v)

Depth-first Search Example

— 3

DFS Running Time

Inserts and extracts to a stack: O(1) time

For every node v, explore degree(v) edges

) Z degree(v) = 2m

Connected graphs have m > n — 1 and thus is O(m) and for
general graphs, it is O(n + m)

ITERATIVEDFS(s):
PusH(s)
while the stack is not empty
Vv <« PopP
if v is unmarked
mark v
for each edge vw
PusH(w)

Depth-First Search Tree

 DFS returns a spanning tree, similar to BFS

DFS-Tree(G, s):

Put (o, s) 1n the stack S

While S 1s not empty

Extract (p, v) from S
If v 1s unmarked
Mark v
parent(v) = p
For each edge (v, w):
Put (v, w) 1nto the stack S

* The spanning tree formed by parent edges in a DFS are usually
long and skinny

Depth-First Search Tree

Lemma. For every edge ¢ = (i, v) in G, one of u or v is an ancestor
of the other in T

Proof. Obvious if edge e isin T.

Suppose edge e is not in 1. Without loss of generality, suppose DFS

IS ca

e W

led on u before v.

nen the edge u, v is inspected v must have been already marked

visited (why?)

« Orelse (u,v) € T and we assumed otherwise

« Since (u,v) & T, v is not marked visited during the DFS call on u

« Must have been marked during a recursive call within DFS(u)

e Thusvisadescendantofu BN

In-Class Exercise

Question. Given an undirected connected graph G, how can you
detect (in linear time) that contains a cycle”

[Hint. Use DFS]

cycleC =1-2-4-5-3-1

In-Class Exercise

Question. Given an undirected connected graph G, how can you
detect (in linear time) that contains a cycle”

Idea. \When we encounter a back edge (1, v) during DFS, that edge

IS necessarily part of a cycle (cycle formed by following tree edges
from u to v and then the back edge from v to u).

Cycle-Detection-DFSCu):
Set status of u to marked
for each edges (u, v):
1f v's status 1s unmarked:
DFS(v)
else
found a back edge, report a cycle!

Directed Graphs

Notation. G = (V, E).

* Edges have “orientation”

« Edge (u,v) or sometimes denoted u — v, leaves node u and
enters node v

* Nodes have “in-degree” and “out-degree”

* No loops or multi-edges (why?)

Terminology of graphs extend
to directed graphs: directed
paths, cycles, etc.

Directed Graphs in Practice

Web graph:
Webpages are nodes, hyperlinks are edges

Orientation of edges is crucial
Search engines use hyperlink structure to rank web pages

w S ve o
>
§ %
Road network o %
c = %
g 3 x
; Vestry 5p © § (/"o@ .
Y St
o 8
C)
Vestry st £y
. . @
* Road: nodes ;
. 4 Laight §
3 Laight gy O
E: T Yy
s aight St Sy
bert 5t = S] =y
2 = &
= @
e Edge: one-way street : ;B
. § & = @ D Q0 y;
H 5 Z S, o
IS 2 s York ¢ S 4 @
T 9 S L @ [y S
o = o s} Or @ -
& 5 7] & &)
[¢ S = §‘27 o &
Beach 5y I g}"
-
Encsson 5¢
45,
&, 8,
5 e, 4 Q.
Mogre 2 L0 Sy S %
st 5 K& 7% on
o D LA
© d
<
N Moore g st
7] N Moore St P4 Uy o
< < 9 o ~
S @ Cans
a o W
] N =3
e F n S S . & -
& ranklin sy T L ‘; t ,§\ a S %/4 m
g Franklin s¢ m a5)5> § e’S/
5 7 2 S)
@ e a O &
amson St (&) ? % 65)
Hamson St &, :2.-3 QS
/)‘ird > 73, ’7,,5
S %”’a S
7
u,

©2008 Google - Map data ©20Q3\Sanborn, NAVTEQ™ - Terms of Use

Staple g

Strong Connectivity & Reachability

Directed reachability. Given a node s find all nodes reachable from s.

* Can use both BFS and DFS. Both visit exactly the set of nodes
reachable from start node s.

e Strong connectivity. Connected components in directed graphs
defined based on mutual reachability. Two vertices u, v in a directed
graph G are mutually reachable if there is a directed path from u to v
and from from v to u. A graph G is strongly connected if every pair
of vertices are mutually reachable

* The mutual reachabillity relation decomposes the graph into
strongly-connected components

Strongly-connected components. For each v € V| the set of
vertices mutually reachable from v, defines the strongly-connected
component of G containing v.

Strongly Connected Components

Deciding Strongly Connected

First idea. How can we use BFS/DFS to determine strong
connectivity? Recall: BFS/DFS on graph G starting at v will identifies

all vertices reachable from v by directed paths

o Pick a vertex v. Check to see whether every other vertex is
reachable from v;

« Now see whether v is reachable from every other vertex
Analysis

o First step: one call to BFS: O(n + m) time

« Second step: n — 1 calls to BFS: O(n(n + m)) time

Can we do better?

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph
e Build Gyey = (V, E(oy) Where (u,v) € Er iff (V,u) € E

« There is a directed path from v to u in G, iff there is a directed
path fromutovin G

o Call BFS(Gygy, v): Every vertex is reachable from v (in Gyg,)) if
and only if v is reachable from every vertex (in G).

Analysis (Performance)
« BFS(G,v): O(n + m) time
e Build Gygy: O(n + m) time. [Do you believe this?]
« BFS(Gioy,Vv): O(n + m)time

e Overall, linear time algorithm!

Kosaraju’s Algorithm

Testing Strong Connectivity

Idea. Flip the edges of G and do a BFS on the new graph
o Build Gyey, = (V, E(g\) Where (u,v) € Ep, iff (v,u) € E

« There is a directed path from v to u in Gy, iff there is a
directed path fromutovin G

« Call BFS(Gyg,, v): Every vertex is reachable from v (in Gygy) if
and only if v is reachable from every vertex (in G).

Analysis (Correctness)

Claim. If v is reachable from every node in G and every node
in G is reachable from v then G must be strongly connected

Proof. For any two nodes x,y € V, they are mutually
reachable through v, thatis, x ~ v ~yandy v ~ z I

Directed Acyclic Graphs (DAGS)

Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle
in linear time? Can we apply the same strategy (DFS) as we did for
undirected graphs?

/\/\

V5

\/\/

a DAG

Directed Acyclic Graphs (DAGS)

Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle
in linear time? Can we apply the same strategy (DFS) as we did for
undirected graphs?

/\/\

V5

\/\/

a DAG

Directed Acyclic Graphs (DAGS)

Definition. A directed graph is acyclic (or a DAG) if it contains no
(directed) cycles.

Question. Given a directed graph G, can you detect if it has a cycle
in linear time? Can we apply the same strategy (DFS) as we did for
undirected graphs®?

Cycle-Detection-Directed-DFSCu):
Set status of u to marked
for each edges (u, v):
1f v's status 1s unmarked:
DFS(v)
else 1f v 1s marked but not finished
report a cycle!
mark u finished

