Introduction to

Randomized Algorithms:
Probability Review

Coping with Intractability

 We saw a lot of optimization problems are NP complete/hard
« Sacrifice one of three desired features

» Solve arbitrary instances of the problem

e Solve problem to optimality

e Solve problem in polynomial time
* (Coping strategies

* Design algorithms for special cases of the problem

* Design approximation algorithms

* Design faster exponential-time algorithms

 Rely on heuristics

Approximation Algorithms

Returns near-optimal solution to a minimization/maximization problem

An algorithm is a factor a approximation or a-competitive for a problem iff
for every instance of the problem it can find a solution within a factor a of
the optimal solution

Maximization problem: @ > 1 and the solution found by the algorithm is
at most a times the optimal

Minimization problem: @ < 1 and the approximate solution is at least a
times the optimal

Approximation solution for many NP hard problems:
e \ertex cover, set cover, hamiltonian cycles

e MAX-3-SAT, Max cut, etc.

New algorithmic strategy for many approximation algorithms:
randomization

Why Randomness

 Randomization. Allow fair coin flip in unit time.
 Why randomize?

 Deterministic algorithms ofter little flexibility

 Randomization often leads to surprisingly simple & fast algorithms
* A big part of computer science:

* Symmetry-breaking protocols

* (Contention resolution

* Hashing

* Load balancing

Cryptographic protocols, etc

Randomness in Algorithms

 Two ways in which randomness and algorithms can interact
 The input to the algorithm could be random

* Analyzing algorithms on random input is called average-case
analysis (as we are analyzing the behavior of the algorithm on an
‘average” input, subject to underlying random process)

 The algorithm itself behaves randomly

* |nputs are worst-case but algorithm can flip some coins and make
decisions based on that, we call these randomized algorithms

Where We’re Going

 Randomized algorithms fall into two broad categories:

Monte-Carlo algorithms
 Find the correct answer most of the time

o (Can usually amplify probability of success with repetitions
* Example, Karger's min cut

Las-Vegas algorithms
* Always find the correct answer, e.g. RandQuick sort

* But the running time guarantees are not worst (but hold in

expectation or with high probability depending on the
randomness)

 Randomized data structures: hashing, search trees, filters, etc.

Outline for Coming Lectures

e Discrete probability review and warm up with randomization
* Assignment 8 will give practice with this
 Randomized algorithms/ data structures (Chapter 13 in KT)
 Min cut
e Sorting, selection
* Approximate Max-cut, MAX-3-SAT
* Load balancing, balls and bins
* Skip lists, Bloom filters, etc
* Approximation algorithms come next (Chapter 11 in KT)

* \ertex cover, set cover, Ham cycle, etc.

Discrete Probability Review

« A discrete probability space consists of a non-empty countable set €2,
called the sample space with a probability mass function Pr : € — R s.t.

Prlw] >0 Vw € € and Z Priw] =1

W€l
* E.Q.
A fair coin: £ = {heads, tails} and Pr[heads] = Pr[tails] = 1/2

« A fair six-sided die: Q = {1,2,3,4,5,6} and
Prlw] =1/6 Vw € Q

Events and Probability

Events. A subset of €2 are usually called events that are usually a
collection of outcomes that satisfy some condition

Probably of an event A, is Pr[A] = Z Prlw] (extending definition: Pr : 2¢ — R)
w€EA

Example: Getting a total of 6 when rolling two fair dice
- A =1{(1,5),2,4),3,3),(42),5,1)]
« Pr(A) =35/36

Just like sets, events can be combined using set operations N, U,
complement, etc.

« Rolling two fair dice and getting two 3s

« Pr[two 5s] = Pr[red 5N blue 5] = 1/36

Conditional Prob and Union Bound

Conditional probability and Bayes’ Theorem. Pr(A | B) denotes the
probability of event A, given that event B happens with non-zero probability

PrlA N B]
Pr|B]

Prl[A | B] =

Thus, if both A, B happen with non-zero probability we have:
PrfAN B] = Pr[A|B] - Pr[B] = Pr[B|A] - Pr[A]

Two events A and B are independent iff PrlA N B] = Pr[A] - Pr[B]

Thus, if two A and B events are independent, then Pr[A | B] = Pr[A]

Union bound (Very Imp Tool in Randomized Algorithms).

« Fix n arbitrary events Ay, ..., A, from some sample space €2, then

PrlUL Al <) PrA]
=1

Random Variable an Expectation

A random variable X is a function from a sample space €2 (with a probability
measure) to some value set (e.g. real numbers, integers, etc.)

A random variable from €2 to {0,1} is called an indicator random variable

The expectation of a random variable X is defined as:

E[X] := Zx . P[X = x]

1
E.g. expected value of top face when rolling a dice = i (1+2+3+44+5+6)

If A is an arbitrary event with Pr[A] > 0, the conditional expectation of X given
Ais

E[X|A] := Zx- PrX = x| A]

X

Random Variable an Expectation

If A is an arbitrary event with 0 < Pr[A] < 1, we have
. E[X]=E[X|A]-Pr[A] + E[X|A]Pr[A]
For random variables X and Y, E[X] = Z EX|Y=y]-Pr[Y=y]
y

Linearity of expectation (Very Imp Tool in Randomized Algorithms).
For any real-valued random variables X, X5, ..., X, and any real

coefficients ay, a,, ..., O,

E[i (Otl- ' Xl)] = i (051' ‘ E[Xl])
i=1 =1

Note. Linearity of expectation does not require independence of r.v.s

Common Probability Distributions

A probability distribution assigns a probability to each possible value of a
random variable

Uniform distribution on set of outcomes §S. e.g. fair die roll.
PrX = x] = 1/|S| and E[X] = () x)/|S|
xeS

Bernoulli. Suppose you run an experiment with probability of success p
and failure 1 — p. Example, coin toss where head is success.

Let X be a Bernoulli or indicator random variable that is 1 if we succeed,
and 0 otherwise. Then,

E[X]:Zx-Pr[sz]=().Pr[X=()]_|_1.|Dr[X=1]=p

X

Binomial Distribution

Consider now a sequence of n independent coin flips. What is the distribution
of heads in the entire sequence?

More generally consider n independent Bernoulli trials (with success
probability p)

Let X denote the number of successes then X has a Binomial distribution.

PriX =jl = (?)pj(l - p)'7

n
Let X; denote the indicator variable that ith trial is a success, and X = Z X;
i=1

Then E|X]| = E| Z X = Z E[X;] = np by linearity of expectation.
i=1 i=1

Geometric Distribution

Suppose that we flip a coin until it lands on heads. What is the distribution
of the number of coin flips?

Let X be a random variable representing the number of independent
Bernoulli trials (each with success probability p) until first success, then X is
sald to have a geometric distribution

PriX=x] = (1 —p)*'p

To calculate the expectation of X, we make use of the nice recursive
structure of the process

e Do onetrial, if it is a success we are done, else we need to start over
« EX]=p-1+{-p)-(1+E[X])
« Solving this gives us E[X] = 1/p

That is, in 2 coin flips on average we expect to see a heads

Card Guessing Game: Memoryless

Game. To amaze your friends you have them shuftle deck of n cards and
then turn over one card at a time. Before each card is turned, you predict
Its identity. You have no psychic abilities or memory to remember cards

Your strategy: guess uniformly at random

How many predictions do you expect to be correct?

Let X denote the r.v. equal to the number of correct predictions and X;
denote the indicator variable that the ith guess is correct

Thus, X = iXi and E[X] = E[iXi] = iE[Xi]
i=1 i=1 i=1

E[X]=0-Pr(X, =0)+1-Pr(X,=1)=Pr(X,=1)=1/n
Thus, E[X] =1

Card Guessing Game: Memoryfull

Suppose we play the same game but now assume you have the ability to
remember cards that have already been turned

Your strategy: guess uniformly at random among cards that have not been
turned over

Let X denote the r.v. equal to the number of correct predictions and X,
denote the indicator variable that the ith guess is correct

Thus, X = iXi and E[X] = E[iXi] = iE[X,-]
i=1 i=1

=1

n—i+1

n n 1

Thus, E[X] = Zn_1+1 — 27

Harmonic Numbers

n
1
The nth harmonic number, denoted H, is defined as H, = Z —
l

i=1

Theorem. H, = O(logn)

Proof Idea. Upper and lower bound area under the curve

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

Card Guessing Game: Memoryfull

Suppose we play the same game but now assume you have the ability to
remember cards that have already been turned

Your strategy: guess uniformly at random among cards that have not been
turned over

Let X denote the r.v. equal to the number of correct predictions and X,
denote the indicator variable that the ith guess is correct

Thus, X = iXi and E[X] = E[iXi] = iE[X,-]
i=1 i=1

=1

n—i+1

n

Thus, E[X] = Z

=1

|
— E—z@l
n—i+1 i:Ii (log)

Coupon/Pokemon Collector Problem

o Suppose there are n different types of Pokemon cards
 |n each trial we purchase a pack that contains a Pokemon card

 We repeat until we have at least one of each type of card, how long (how
many packs) does it take in expectation to collect all?

« Let X be the r.v. equal to the numnber of boxes until you first have a a
coupon of each type, we want E|X]

o« We break X into smaller indicator variables as usual

e |dea: we make progress every time we get a card we don't already have

Coupon/Pokemon Collector Problem

 Let X; denote the number of packs bought during the ith phase (ith
phase ends as soon as we see the ith distinct card)

 We can think of each purchase as a biased coin flip: “heads” means we
get a new Pokemon, “tails” means we got one we already have”

« Forindex 1, the probability of heads in this step?

n—i+1
« P = (each of the n Pokemons are equally likely and there are
n

n — 1+ 1 Pokemon we don'’t already have)

« E[X;] = Expected[number of flips until first heads] = 1/p

n

E[X] = E[zn:Xi] — zn:E[Xi] =y n—’:+ - = Z% — nH, = O(nlog n)
i=1 i=1

Acknowledgments

e Some of the material in these slides are taken from

« Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE. pdf)

« |ecture slides: https://web.stanford.edu/class/archive/cs/cs161/
cs161.1138/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/

