
Introduction to
Randomized Algorithms:  

Probability Review

• We saw a lot of optimization problems are NP complete/hard

• Sacrifice one of three desired features

• Solve arbitrary instances of the problem

• Solve problem to optimality

• Solve problem in polynomial time

• Coping strategies

• Design algorithms for special cases of the problem

• Design approximation algorithms

• Design faster exponential-time algorithms

• Rely on heuristics

Coping with Intractability

• Returns near-optimal solution to a minimization/maximization problem

• An algorithm is a factor approximation or -competitive for a problem iff
for every instance of the problem it can find a solution within a factor of
the optimal solution

• Maximization problem: and the solution found by the algorithm is
at most times the optimal

• Minimization problem: and the approximate solution is at least
times the optimal

• Approximation solution for many NP hard problems:
• Vertex cover, set cover, hamiltonian cycles
• MAX-3-SAT, Max cut, etc.

• New algorithmic strategy for many approximation algorithms:
randomization

α α
α

α > 1
α

α < 1 α

Approximation Algorithms

• Randomization. Allow fair coin flip in unit time.

• Why randomize?

• Deterministic algorithms offer little flexibility

• Randomization often leads to surprisingly simple & fast algorithms

• A big part of computer science:

• Symmetry-breaking protocols

• Contention resolution

• Hashing

• Load balancing

• Cryptographic protocols, etc

Why Randomness

• Two ways in which randomness and algorithms can interact

• The input to the algorithm could be random

• Analyzing algorithms on random input is called average-case
analysis (as we are analyzing the behavior of the algorithm on an
“average” input, subject to underlying random process)

• The algorithm itself behaves randomly

• Inputs are worst-case but algorithm can flip some coins and make
decisions based on that, we call these randomized algorithms

Randomness in Algorithms

• Randomized algorithms fall into two broad categories:

• Monte-Carlo algorithms

• Find the correct answer most of the time

• Can usually amplify probability of success with repetitions

• Example, Karger’s min cut

• Las-Vegas algorithms

• Always find the correct answer, e.g. RandQuick sort

• But the running time guarantees are not worst (but hold in
expectation or with high probability depending on the
randomness)

• Randomized data structures: hashing, search trees, filters, etc.

Where We’re Going

• Discrete probability review and warm up with randomization

• Assignment 8 will give practice with this

• Randomized algorithms/ data structures (Chapter 13 in KT)

• Min cut

• Sorting, selection

• Approximate Max-cut, MAX-3-SAT

• Load balancing, balls and bins

• Skip lists, Bloom filters, etc

• Approximation algorithms come next (Chapter 11 in KT)

• Vertex cover, set cover, Ham cycle, etc.

Outline for Coming Lectures

• A discrete probability space consists of a non-empty countable set ,
called the sample space with a probability mass function s.t.

•
 and

• E.g.

• A fair coin: and

• A fair six-sided die: and

Ω
Pr : Ω → ℝ

Pr[ω] ≥ 0 ∀ω ∈ Ω ∑
ω∈Ω

Pr[ω] = 1

Ω = {heads, tails} Pr[heads] = Pr[tails] = 1/2

Ω = {1,2,3,4,5,6}
Pr[ω] = 1/6 ∀ω ∈ Ω

Discrete Probability Review

• Events. A subset of are usually called events that are usually a
collection of outcomes that satisfy some condition

•
Probably of an event , is (extending definition:)

• Example: Getting a total of when rolling two fair dice

•

•

• Just like sets, events can be combined using set operations
complement, etc.

• Rolling two fair dice and getting two s

•

Ω

A Pr[A] = ∑
ω∈A

Pr[ω] Pr : 2Ω → ℝ

6

A = {(1,5), (2,4), (3,3), (4,2), (5,1)}

Pr(A) = 5/36

∩ , ∪ ,

5

Pr[two 5s] = Pr[red 5 ∩ blue 5] = 1/36

Events and Probability

• Conditional probability and Bayes’ Theorem. denotes the
probability of event , given that event happens with non-zero probability

•

• Thus, if both happen with non-zero probability we have:

• Two events and are independent iff

• Thus, if two and events are independent, then

• Union bound (Very Imp Tool in Randomized Algorithms).

• Fix arbitrary events from some sample space , then

Pr(A |B)
A B

Pr[A |B] =
Pr[A ∩ B]

Pr[B]

A, B
Pr[A ∩ B] = Pr[A |B] ⋅ Pr[B] = Pr[B |A] ⋅ Pr[A]

A B Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

A B Pr[A |B] = Pr[A]

n A1, …, An Ω

Pr[∪n
i=1Ai] ≤

n

∑
i=1

Pr[Ai]

Conditional Prob and Union Bound

• A random variable is a function from a sample space (with a probability
measure) to some value set (e.g. real numbers, integers, etc.)

• A random variable from to is called an indicator random variable

• The expectation of a random variable is defined as:

•

• E.g. expected value of top face when rolling a dice

• If is an arbitrary event with , the conditional expectation of given
 is

•

X Ω

Ω {0,1}

X

E[X] := ∑
x

x ⋅ P[X = x]

=
1
6

⋅ (1 + 2 + 3 + 4 + 5 + 6)

A Pr[A] > 0 X
A

E[X |A] := ∑
x

x ⋅ Pr[X = x |A]

Random Variable an Expectation

• If is an arbitrary event with , we have

•

•
For random variables and ,

• Linearity of expectation (Very Imp Tool in Randomized Algorithms).  
For any real-valued random variables and any real
coefficients  
 

• Note. Linearity of expectation does not require independence of r.v.s

A 0 < Pr[A] < 1

E[X] = E[X |A] ⋅ Pr[A] + E[X |A]Pr[A]

X Y E[X] = ∑
y

E[X |Y = y] ⋅ Pr[Y = y]

X1, X2, …, Xn
α1, α2, …, αn

E[
n

∑
i=1

(αi ⋅ Xi)] =
n

∑
i=1

(αi ⋅ E[Xi])

Random Variable an Expectation

• A probability distribution assigns a probability to each possible value of a
random variable

• Uniform distribution on set of outcomes . e.g. fair die roll.

•
 and

• Bernoulli. Suppose you run an experiment with probability of success
and failure . Example, coin toss where head is success.

• Let be a Bernoulli or indicator random variable that is if we succeed,
and otherwise. Then,  
 

S

Pr[X = x] = 1/ |S | E[X] = (∑
x∈S

x)/ |S |

p
1 − p

X 1
0

E[X] = ∑
x

x ⋅ Pr[X = x] = 0 ⋅ Pr[X = 0] + 1 ⋅ Pr[X = 1] = p

Common Probability Distributions

• Consider now a sequence of independent coin flips. What is the distribution
of heads in the entire sequence?

• More generally consider independent Bernoulli trials (with success
probability)

• Let denote the number of successes then has a Binomial distribution.

•

•
Let denote the indicator variable that th trial is a success, and

•
Then by linearity of expectation.

n

n
p

X X

Pr[X = j] = (n
j)pj(1 − p)n−j

Xi i X =
n

∑
i=1

Xi

E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi] = np

Binomial Distribution

• Suppose that we flip a coin until it lands on heads. What is the distribution
of the number of coin flips?

• Let be a random variable representing the number of independent
Bernoulli trials (each with success probability) until first success, then is
said to have a geometric distribution

•

• To calculate the expectation of , we make use of the nice recursive
structure of the process

• Do one trial, if it is a success we are done, else we need to start over

•

• Solving this gives us

• That is, in coin flips on average we expect to see a heads

X
p X

Pr[X = x] = (1 − p)x−1p

X

E[X] = p ⋅ 1 + (1 − p) ⋅ (1 + E[X])

E[X] = 1/p

2

Geometric Distribution

• Game. To amaze your friends you have them shuffle deck of cards and
then turn over one card at a time. Before each card is turned, you predict
its identity. You have no psychic abilities or memory to remember cards

• Your strategy: guess uniformly at random

• How many predictions do you expect to be correct?

• Let denote the r.v. equal to the number of correct predictions and
denote the indicator variable that the th guess is correct

•
Thus, and

•

• Thus,

n

X Xi
i

X =
n

∑
i=1

Xi E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi]

E[Xi] = 0 ⋅ Pr(Xi = 0) + 1 ⋅ Pr(Xi = 1) = Pr(Xi = 1) = 1/n

E[X] = 1

Card Guessing Game: Memoryless

• Suppose we play the same game but now assume you have the ability to
remember cards that have already been turned

• Your strategy: guess uniformly at random among cards that have not been
turned over

• Let denote the r.v. equal to the number of correct predictions and
denote the indicator variable that the th guess is correct

•
Thus, and

•

•
Thus,

X Xi
i

X =
n

∑
i=1

Xi E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi]

E[Xi] = Pr(Xi = 1) =
1

n − i + 1

E[X] =
n

∑
i=1

1
n − i + 1

=
n

∑
i=1

1
i

Card Guessing Game: Memoryfull

•
The th harmonic number, denoted is defined as

• Theorem.

• Proof Idea. Upper and lower bound area under the curve

n Hn Hn =
n

∑
i=1

1
i

Hn = Θ(log n)

Harmonic Numbers

• Suppose we play the same game but now assume you have the ability to
remember cards that have already been turned

• Your strategy: guess uniformly at random among cards that have not been
turned over

• Let denote the r.v. equal to the number of correct predictions and
denote the indicator variable that the th guess is correct

•
Thus, and

•

•
Thus,

X Xi
i

X =
n

∑
i=1

Xi E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi]

E[Xi] = Pr(Xi = 1) =
1

n − i + 1

E[X] =
n

∑
i=1

1
n − i + 1

=
n

∑
i=1

1
i

= Θ(log n)

Card Guessing Game: Memoryfull

Coupon/Pokemon Collector Problem
• Suppose there are different types of Pokemon cards

• In each trial we purchase a pack that contains a Pokemon card

• We repeat until we have at least one of each type of card, how long (how
many packs) does it take in expectation to collect all?

• Let be the r.v. equal to the numnber of boxes until you first have a a
coupon of each type, we want

• We break into smaller indicator variables as usual

• Idea: we make progress every time we get a card we don’t already have

n

X
E[X]

X

Coupon/Pokemon Collector Problem
• Let denote the number of packs bought during the th phase (th

phase ends as soon as we see the th distinct card)

• We can think of each purchase as a biased coin flip: “heads” means we
get a new Pokemon, “tails” means we got one we already have”

• For index , the probability of heads in this step?

• (each of the Pokemons are equally likely and there are

 Pokemon we don’t already have)

•

•

Xi i i
i

i

p =
n − i + 1

n
n

n − i + 1

E[Xi] = Expected[number of flips until first heads] = 1/p

E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi] =
n

∑
i=1

n
n − i + 1

=
n

∑
i=1

n
i

= nHn = Θ(n log n)

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf)

• Lecture slides: https://web.stanford.edu/class/archive/cs/cs161/
cs161.1138/

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/

