
Introduction to 
Randomized Algorithms:  

Probability Review



• We saw a lot of optimization problems are NP complete/hard  

• Sacrifice one of three desired features 

• Solve arbitrary instances of the problem 

• Solve problem to optimality 

• Solve problem in polynomial time 

• Coping strategies 

• Design algorithms for special cases of the problem 

• Design approximation algorithms 

• Design faster exponential-time algorithms 

• Rely on heuristics

Coping with Intractability



• Returns near-optimal solution to a minimization/maximization problem 

• An algorithm is a factor  approximation or -competitive for a problem iff 
for every instance of the problem it can find a solution within a factor  of 
the optimal solution 

• Maximization problem:  and the solution found by the algorithm is 
at most  times the optimal 

• Minimization problem:  and the approximate solution is at least  
times the optimal 

• Approximation solution for many NP hard problems:  
• Vertex cover, set cover, hamiltonian cycles 
• MAX-3-SAT, Max cut, etc. 

• New algorithmic strategy for many approximation algorithms: 
randomization
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Approximation Algorithms



• Randomization.  Allow fair coin flip in unit time. 

• Why randomize?   

• Deterministic algorithms offer little flexibility 

• Randomization often leads to surprisingly simple & fast algorithms 

• A big part of computer science: 

• Symmetry-breaking protocols 

• Contention resolution 

• Hashing 

• Load balancing 

• Cryptographic protocols, etc

Why Randomness



• Two ways in which randomness and algorithms can interact 

• The input to the algorithm could be random  

• Analyzing algorithms on random input is called average-case 
analysis (as we are analyzing the behavior of the algorithm on an 
“average” input, subject to underlying random process) 

• The algorithm itself behaves randomly  

• Inputs are worst-case but algorithm can flip some coins and make 
decisions based on that, we call these randomized algorithms

Randomness in Algorithms



• Randomized algorithms fall into two broad categories: 

• Monte-Carlo algorithms

• Find the correct answer most of the time 

• Can usually amplify probability of success with repetitions 

• Example, Karger’s min cut 

• Las-Vegas algorithms

• Always find the correct answer, e.g. RandQuick sort 

• But the running time guarantees are not worst (but hold in 
expectation or with high probability depending on the 
randomness) 

• Randomized data structures: hashing, search trees, filters, etc.

Where We’re Going



• Discrete probability review and warm up with randomization 

• Assignment 8 will give practice with this 

• Randomized algorithms/ data structures (Chapter 13 in KT) 

• Min cut 

• Sorting, selection  

• Approximate Max-cut, MAX-3-SAT 

• Load balancing, balls and bins 

• Skip lists, Bloom filters, etc 

• Approximation algorithms come next (Chapter 11 in KT) 

• Vertex cover, set cover, Ham cycle, etc.

Outline for Coming Lectures



•  A discrete probability space consists of a non-empty countable set , 
called the sample space with a probability mass function  s.t. 

•
 and  

• E.g.   

• A fair coin:  and  

• A fair six-sided die:  and 

Ω
Pr : Ω → ℝ

Pr[ω] ≥ 0 ∀ω ∈ Ω ∑
ω∈Ω

Pr[ω] = 1

Ω = {heads, tails} Pr[heads] = Pr[tails] = 1/2

Ω = {1,2,3,4,5,6}
Pr[ω] = 1/6 ∀ω ∈ Ω

Discrete Probability Review



•  Events. A subset of  are usually called events that are usually a 
collection of outcomes that satisfy some condition 

•
Probably of an event , is  (extending definition: ) 

• Example: Getting a total of  when rolling two fair dice 

•  

•   

• Just like sets, events can be combined using set operations  
complement, etc. 

• Rolling two fair dice and getting two s 

•   

Ω

A Pr[A] = ∑
ω∈A

Pr[ω] Pr : 2Ω → ℝ

6

A = {(1,5), (2,4), (3,3), (4,2), (5,1)}

Pr(A) = 5/36

∩ , ∪ ,

5

Pr[two 5s] = Pr[ red 5 ∩ blue 5] = 1/36

Events and Probability



• Conditional probability and Bayes’ Theorem.   denotes the 
probability of event , given that event  happens with non-zero probability 

•   

• Thus, if both  happen with non-zero probability we have:
 

• Two events  and  are independent iff  

• Thus, if two  and  events are independent, then  

• Union bound (Very Imp Tool in Randomized Algorithms). 

• Fix  arbitrary events  from some sample space , then 

 

Pr(A |B)
A B

Pr[A |B] =
Pr[A ∩ B]

Pr[B]

A, B
Pr[A ∩ B] = Pr[A |B] ⋅ Pr[B] = Pr[B |A] ⋅ Pr[A]

A B Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

A B Pr[A |B] = Pr[A]

n A1, …, An Ω

Pr[∪n
i=1Ai] ≤

n

∑
i=1

Pr[Ai]

Conditional Prob and Union Bound



• A random variable  is a function from a sample space  (with a probability 
measure) to some value set (e.g. real numbers, integers, etc.) 

• A random variable from  to  is called an indicator random variable  

• The expectation of a random variable  is defined as: 

•
  

• E.g. expected value of top face when rolling a dice   

• If  is an arbitrary event with , the conditional expectation of  given 
 is  

•
 

X Ω

Ω {0,1}

X

E[X] := ∑
x

x ⋅ P[X = x]

=
1
6

⋅ (1 + 2 + 3 + 4 + 5 + 6)

A Pr[A] > 0 X
A

E[X |A] := ∑
x

x ⋅ Pr[X = x |A]

Random Variable an Expectation



• If  is an arbitrary event with , we have 

•  

•
For random variables  and ,   

• Linearity of expectation (Very Imp Tool in Randomized Algorithms).  
For any real-valued random variables  and any real 
coefficients   
 

  

• Note.  Linearity of expectation does not require independence of r.v.s 

A 0 < Pr[A] < 1

E[X] = E[X |A] ⋅ Pr[A] + E[X |A]Pr[A]

X Y E[X] = ∑
y

E[X |Y = y] ⋅ Pr[Y = y]

X1, X2, …, Xn
α1, α2, …, αn

E[
n

∑
i=1

(αi ⋅ Xi)] =
n

∑
i=1

(αi ⋅ E[Xi])

Random Variable an Expectation



• A probability distribution assigns a probability to each possible value of a 
random variable 

• Uniform distribution on set of outcomes .  e.g. fair die roll.  

•
 and   

• Bernoulli. Suppose you run an experiment with probability of success  
and failure .  Example, coin toss where head is success. 

• Let  be a Bernoulli or indicator random variable that is  if we succeed, 
and  otherwise. Then,  
 

 

S

Pr[X = x] = 1/ |S | E[X] = (∑
x∈S

x)/ |S |

p
1 − p

X 1
0

E[X] = ∑
x

x ⋅ Pr[X = x] = 0 ⋅ Pr[X = 0] + 1 ⋅ Pr[X = 1] = p

Common Probability Distributions



• Consider now a sequence of  independent coin flips. What is the distribution 
of heads in the entire sequence?  

• More generally consider  independent Bernoulli trials (with success 
probability ) 

• Let  denote the number of successes then  has a Binomial distribution.  

•   

•
Let  denote the indicator variable that th trial is a success, and   

•
Then  by linearity of expectation.

n

n
p

X X

Pr[X = j] = (n
j )pj(1 − p)n−j

Xi i X =
n

∑
i=1

Xi

E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi] = np

Binomial Distribution



• Suppose that we flip a coin until it lands on heads. What is the distribution 
of the number of coin flips? 

• Let  be a random variable representing the number of independent 
Bernoulli trials (each with success probability ) until first success, then  is 
said to have a geometric distribution 

•   

• To calculate the expectation of , we make use of the nice recursive 
structure of the process 

• Do one trial, if it is a success we are done, else we need to start over 

•  

• Solving this gives us  

• That is, in  coin flips on average we expect to see a heads

X
p X

Pr[X = x] = (1 − p)x−1p

X

E[X] = p ⋅ 1 + (1 − p) ⋅ (1 + E[X])

E[X] = 1/p

2

Geometric Distribution



• Game.  To amaze your friends you have them shuffle deck of  cards and 
then turn over one card at a time. Before each card is turned, you predict 
its identity. You have no psychic abilities or memory to remember cards 

• Your strategy: guess uniformly at random 

• How many predictions do you expect to be correct? 

• Let  denote the r.v. equal to the number of correct predictions and  
denote the indicator variable that the th guess is correct 

•
Thus,   and   

•  

• Thus, 

n

X Xi
i

X =
n

∑
i=1

Xi E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi]

E[Xi] = 0 ⋅ Pr(Xi = 0) + 1 ⋅ Pr(Xi = 1) = Pr(Xi = 1) = 1/n

E[X] = 1

Card Guessing Game: Memoryless



• Suppose we play the same game but now assume you have the ability to 
remember cards that have already been turned 

• Your strategy: guess uniformly at random among cards that have not been 
turned over 

• Let  denote the r.v. equal to the number of correct predictions and  
denote the indicator variable that the th guess is correct 

•
Thus,   and   

•   

•
Thus,  

X Xi
i

X =
n

∑
i=1

Xi E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi]

E[Xi] = Pr(Xi = 1) =
1

n − i + 1

E[X] =
n

∑
i=1

1
n − i + 1

=
n

∑
i=1

1
i

Card Guessing Game: Memoryfull



•
The th harmonic number, denoted  is defined as  

• Theorem.  

• Proof Idea. Upper and lower bound area under the curve 

n Hn Hn =
n

∑
i=1

1
i

Hn = Θ(log n)

Harmonic Numbers



• Suppose we play the same game but now assume you have the ability to 
remember cards that have already been turned 

• Your strategy: guess uniformly at random among cards that have not been 
turned over 

• Let  denote the r.v. equal to the number of correct predictions and  
denote the indicator variable that the th guess is correct 

•
Thus,   and   

•   

•
Thus,   

X Xi
i

X =
n

∑
i=1

Xi E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi]

E[Xi] = Pr(Xi = 1) =
1

n − i + 1

E[X] =
n

∑
i=1

1
n − i + 1

=
n

∑
i=1

1
i

= Θ(log n)

Card Guessing Game: Memoryfull



Coupon/Pokemon Collector Problem
• Suppose there are  different types of Pokemon cards 

• In each trial we purchase a pack that contains a Pokemon card 

• We repeat until we have at least one of each type of card, how long (how 
many packs) does it take in expectation to collect all? 

• Let  be the r.v. equal to the numnber of boxes until you first have a a 
coupon of each type, we want   

• We break  into smaller indicator variables as usual 

• Idea: we make progress every time we get a card we don’t already have

n

X
E[X]

X



Coupon/Pokemon Collector Problem
• Let  denote the number of packs bought during the th phase ( th 

phase ends as soon as we see the th distinct card) 

• We can think of each purchase as a biased coin flip: “heads” means we 
get a new Pokemon, “tails” means we got one we already have” 

• For index , the probability of heads in this step? 

•  (each of the  Pokemons are equally likely and there are 

 Pokemon we don’t already have) 

•  

•
  

Xi i i
i

i

p =
n − i + 1

n
n

n − i + 1

E[Xi] = Expected[number of flips until first heads] = 1/p

E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi] =
n

∑
i=1

n
n − i + 1

=
n

∑
i=1

n
i

= nHn = Θ(n log n)
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