
Introduction to
Network Flows

Overview So Far & Going Forward
• So far, algorithmic paradigms:

• Traversal-based graph algorithms

• Greedy algorithms

• Divide and conquer/ Recursion

• Dynamic Programming/ Recursion without Repetition

• Next: “Flows” — model a variety of optimization problems

• After — Intractability (P vs NP, NP hard, NP complete, etc.)

• Finally — Approximation and Randomized Algorithms

Network Flow History
• In 1950s, US military researchers Harris and Ross wrote a

classified report about the rail network linking Soviet Union and
Easter Europe

• Vertices were the geographic regions
• Edges were railway links between the regions
• Edge weights were the rate at which material could be

shipped from one region to next
• Ross and Harris determined:

• maximum amount of stuff that could be moved from Russia to
Europe (max flow)

• cheapest way to disrupt the network by removing rail links 
(min cut)

Network Flow History

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for evaluating rail net capacities. The RAND Corporation, Research
Memorandum RM-1517, October 24, 1955. United States Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

What’s a Flow Network?
• A flow network is just a directed graph with a

• A source is a vertex with in degree

• A sink is a vertex with out degree

• Edge capacities for each edge

G = (V, E)
s 0

t 0
c(e) > 0 e ∈ E

Simplifying Assumptions/Notations
• Assume that each node is on some path, that is,

 exists, for any vertex

• Implies is connected, and

• Assume capacities are integers

• For simplifying expositions, assume if is
not an edge, that is, for and edge

• Non-existent edges/capacities not shown in figures

• Directed edge written as

v s-t
s ↝ v ↝ t v ∈ V

G m ≥ n − 1

c(e) = 0 e = (u, v)
u, v ∈ V (u, v) ∉ E

(u, v) u → v

What’s a Flow?
• Given a flow network, an -flow or just flow (if source

and sink are clear from context) that satisfies:

Flow conservation: , for where 
 

 and

That is, flow into equals flow out of

To simplify notation, define if there is no edge
from to

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v) fout(v) = ∑
w

f(v → w)

v v

f(u → v) = 0
u v

What is a Feasible Flow
• An -flow is feasible if it satisfies the capacity

constraints of the network, that is,:

[Capacity constraint] for each ,

(s, t)

e ∈ E 0 ≤ f(e) ≤ c(e)

0 / 4

0 / 4 0 / 15

10 / 1
0

10 / 105 / 5 vs t

0 / 6

5 / 10

5 / 9

5 / 8

5 / 15

10 / 1
010 / 15

10 / 16

flow capacity

0 / 15

Value of a Flow
• Definition. The value of a flow , written , is .

• Lemma.

•
Proof. Let

•
Then,

• For every , leaving only

• But

• Corollary. .

f v(f) fout(s)

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t : fin(v) = fout(v)
fin(s) + fout(s) = fin(t) + fout(t)

fin(s) = fout(t) = 0 ∎

v(f) = fin(t)

Max-Flow Problem
• Given a flow network, find a flow of maximum value.

Cuts in Flow Networks
• Recall. A cut in a graph is a partition of vertices such

that , and are non-empty.

• Definition. An -cut is a cut s.t. and .

(S, T)
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T) s ∈ S t ∈ T

ts

Cuts in Flow Networks
• For any flow on and any -cut , let

•
 (sum of flow ‘leaving’)

•
 (sum of flow ‘entering’)

• Note: and  

• Lemma. Value of a flow, is the net-
flow out of , for any -cut .

f G = (V, E) (s, t) (S, T)

fout(S) = ∑
v∈S,w∈T

f(v → w) S

fin(S) = ∑
v∈S,w∈T

f(w → v) S

fout(S) = fin(T) fin(S) = fout(T)

v(f) = fout(S) − fin(S)
S (s, t) (S, T)

Cuts in Flow Networks
• Lemma. Value of a flow, is the net-

flow out of , for any -cut .

• Proof.

•

•
 = (Adding some zeros)

 (By definition)

 (all other edges cancel in pairs)

v(f) = fout(S) − fin(S)
S (s, t) (S, T)

v(f) = fout(s)

v(f) = fout(s) − fin(t) ∑
v∈S

(fout(v) − fin(v))

= ∑
v∈S

(∑
w

f(v → w) − ∑
u

f(u → v))

= ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)

Capacities of Cuts
• Capacity of a -cut is the sum of the capacities of

edges leaving :

•

(s, t) (S, T)
S

c(S, T) = ∑
v∈S,w∈T

c(v → w)

Network flow: quiz 1

 Which is the capacity of the given st-cut?

A. 11 (20 + 25 − 8 − 11 − 9 − 6)

B. 34 (8 + 11 + 9 + 6)

C. 45 (20 + 25)

D. 79 (20 + 25 + 8 + 11 + 9 + 6)

812 9

8

161

capacity

s

86

25 t

1020

6 11

Capacities of Cuts
• Capacity of a -cut is the sum of the capacities of

edges leaving :

•

• A dual problem to max-flow:

• Find an -cut of minimum capacity

• Claim. Let be any s-t flow and be any s-t cut then

(s, t) (S, T)
S

c(S, T) = ∑
v∈S,w∈T

f(v → w)

(s, t)

f (S, T)
v(f) ≤ c(S, T)

Relationship: Flows and Cuts
• Claim. Let be any s-t flow and be any s-t cut then

• Proof.

•  
 

 

f (S, T)
v(f) ≤ c(S, T)

v(f) = fout(S) − fin(S)

≤ fout(S) = ∑
v∈S,w∈T

f(v → w)

≤ ∑
v∈S,w∈T

c(v, w) = c(S, T)

Max-Flow Min-Cut Theorem
• A beautiful, powerful relationship between these two

problems in given by the following theorem

• Theorem. Given a flow network , let be an -flow
and let be any -cut of then, 
 

 if and only if 
 
 is a flow of maximum value and is a cut of minimum

capacity.

• Informally, in a flow network the max-flow = min-cut.

G f (s, t)
(S, T) (s, t) G

v(f) = c(S, T)

f (S, T)

Max-Flow Min-Cut Theorem
• We will prove the max-flow min-cut their by construction

• Designing a max-flow algorithm, proving its optimality
and showing the max-flow min-cut theorem holds

• Called the Ford-Fulkerson Algorithm

• First, we start with a greedy approach

Towards a Max-Flow Algorithm
• Greedy strategy:

• Start with for each edge

• Find an path where each edge has

• “Augment” flow (as much as possible) along path

• Repeat until you get stuck

• Let’s take an example

f(e) = 0

s ↝ t P
f(e) < c(e)

P

Towards a Max-Flow Algorithm
• Start with for each edge
• Find an path where each edge has

• “Augment” flow (as much as possible) along path
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

flow network G and flow f

0 / 10 0

value of flow

0 / 10

flow capacity

Towards a Max-Flow Algorithm
• Start with for each edge
• Find an path where each edge has

• “Augment” flow (as much as possible) along path
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

s t

0 / 2
0 / 1

0 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

value of flow

0 / 10

flow capacity

Towards a Max-Flow Algorithm
• Start with for each edge
• Find an path where each edge has

• “Augment” flow (as much as possible) along path
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

value of flow

0 / 10

flow capacity

Towards a Max-Flow Algorithm
• Start with for each edge
• Find an path where each edge has

• “Augment” flow (as much as possible) along path
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

s t

0 / 2
8 / 1

0 0 / 6

8 / 10

0 / 4

8 / 8

0 / 90 / 10 8

value of flow

0 / 10

flow capacity

Towards a Max-Flow Algorithm
• Start with for each edge
• Find an path where each edge has

• “Augment” flow (as much as possible) along path
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

s t

2 / 2
10 / 1

0 0 / 6

10 / 10

0 / 4

8 / 8

2 / 90 / 10 10

value of flow

0 / 10

flow capacity

Towards a Max-Flow Algorithm
• Start with for each edge
• Find an path where each edge has

• “Augment” flow (as much as possible) along path
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

s t

2 / 2
10 / 1

0 0 / 6

10 / 10

0 / 4

8 / 8

2 / 90 / 10 10

value of flow

0 / 10

flow capacity

Towards a Max-Flow Algorithm
• Start with for each edge
• Find an path where each edge has

• “Augment” flow (as much as possible) along path
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 16

value of flow

6 / 10

flow capacity

Towards a Max-Flow Algorithm
• Start with for each edge
• Find an path where each edge has

• “Augment” flow (as much as possible) along path
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

s t

2 / 2
10 / 1

0 6 / 6

10 / 10

0 / 4

8 / 8

8 / 96 / 10 16

value of flow

6 / 10

flow capacityending flow value = 16

Towards a Max-Flow Algorithm
• Start with for each edge
• Find an path where each edge has

• “Augment” flow (as much as possible) along path
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

max-flow value = 19

3 / 4

7 / 8

19

0 / 2
10 / 1

0

10 / 10

6 / 6

9 / 10

9 / 10

9 / 9s t

value of flow

Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision

• Consider the following flow network

• Unique max flow has

• Greedy could choose as first  
 
 
 
 
 
 

• Key: Need a mechanism to “undo” previous flow decisions

f(v → w) = 0
s → v → w → t P

s

t

w

v

1

2

2

22

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

