
Introduction to
Network Flows



Overview So Far & Going Forward
• So far, algorithmic paradigms:  

• Traversal-based graph algorithms 

• Greedy algorithms 

• Divide and conquer/ Recursion 

• Dynamic Programming/ Recursion without Repetition 

• Next: “Flows” — model a variety of optimization problems 

• After — Intractability (P vs NP, NP hard, NP complete, etc.) 

• Finally — Approximation and Randomized Algorithms



Network Flow History
• In 1950s, US military researchers Harris and Ross wrote a 

classified report about the rail network linking Soviet Union and 
Easter Europe 

• Vertices were the geographic regions 
• Edges were railway links between the regions 
• Edge weights were the rate at which material could be 

shipped from one region to next 
• Ross and Harris determined: 

• maximum amount of stuff that could be moved from Russia to 
Europe (max flow) 

• cheapest way to disrupt the network by removing rail links 
(min cut) 



Network Flow History

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for evaluating rail net capacities. The RAND Corporation, Research 
Memorandum RM-1517, October 24, 1955. United States Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf



What’s a Flow Network?
• A flow network is just a directed graph  with a 

• A source is a vertex  with in degree  

• A sink is a vertex  with out degree  

• Edge capacities  for each edge 

G = (V, E)
s 0

t 0
c(e) > 0 e ∈ E



Simplifying Assumptions/Notations 
• Assume that each node  is on some  path, that is, 

  exists, for any vertex  

• Implies  is connected, and  

• Assume capacities are integers 

• For simplifying expositions, assume  if  is 
not an edge, that is, for  and edge  

• Non-existent edges/capacities not shown in figures 

• Directed edge  written as 

v s-t
s ↝ v ↝ t v ∈ V

G m ≥ n − 1

c(e) = 0 e = (u, v)
u, v ∈ V (u, v) ∉ E

(u, v) u → v



What’s a Flow?
• Given a flow network, an -flow or just flow (if source  

and sink  are clear from context)  that satisfies: 

Flow conservation:   , for  where 
 

 and  

That is, flow into  equals flow out of  

To simplify notation, define  if there is no edge 
from  to 

(s, t) s
t f : E → ℤ+

fin(v) = fout(v) v ≠ s, t

fin(v) = ∑
u

f(u → v) fout(v) = ∑
w

f(v → w)

v v

f(u → v) = 0
u v



What is a Feasible Flow
• An -flow is feasible if it satisfies the capacity 

constraints of the network, that is,: 

[Capacity constraint] for each , 

(s, t)

e ∈ E 0 ≤ f(e) ≤ c(e)
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Value of a Flow
• Definition. The value of a flow , written , is . 

• Lemma.   

•
Proof.   Let  

•
Then,  

• For every , leaving only 
 

• But  

• Corollary. .

f v( f ) fout(s)

fout(s) = fin(t)

f(E) = ∑
e∈E

f(e)

∑
v∈V

fin(v) = f(E) = ∑
v∈V

fout(v)

v ≠ s, t : fin(v) = fout(v)
fin(s) + fout(s) = fin(t) + fout(t)

fin(s) = fout(t) = 0 ∎

v( f ) = fin(t)



Max-Flow Problem
• Given a flow network, find a flow of maximum value.



Cuts in Flow Networks
• Recall. A cut  in a graph is a partition of vertices such 

that  ,  and  are non-empty.

• Definition. An -cut is a cut  s.t.  and .

(S, T)
S ∪ T = V S ∩ T = ∅ S, T

(s, t) (S, T) s ∈ S t ∈ T

ts



Cuts in Flow Networks
• For any flow  on  and any -cut , let 

•
 (sum of flow ‘leaving’ ) 

•
 (sum of flow ‘entering’ ) 

• Note:     and  

• Lemma. Value of a flow,   is the net-
flow out of , for any -cut .

f G = (V, E) (s, t) (S, T)

fout(S) = ∑
v∈S,w∈T

f(v → w) S

fin(S) = ∑
v∈S,w∈T

f(w → v) S

fout(S) = fin(T) fin(S) = fout(T)

v( f ) = fout(S) − fin(S)
S (s, t) (S, T)



Cuts in Flow Networks
• Lemma. Value of a flow,   is the net-

flow out of , for any -cut . 

• Proof.  

•  

•
 =          (Adding some zeros) 

                   (By definition) 

   (all other edges cancel in pairs)

v( f ) = fout(S) − fin(S)
S (s, t) (S, T)

v( f ) = fout(s)

v( f ) = fout(s) − fin(t) ∑
v∈S

( fout(v) − fin(v))

= ∑
v∈S

(∑
w

f(v → w) − ∑
u

f(u → v))

= ∑
v∈S,w∈T

f(v → w) − ∑
v∈S,u∈T

f(u → v)



Capacities of Cuts
• Capacity of a -cut  is the sum of the capacities of 

edges leaving : 

•

(s, t) (S, T)
S

c(S, T) = ∑
v∈S,w∈T

c(v → w)



Network flow:  quiz 1

 Which is the capacity of the given st-cut?

A. 11  (20 + 25 − 8 − 11 − 9 − 6)

B. 34  (8 + 11 + 9 + 6) 

C. 45  (20 + 25)

D. 79  (20 + 25 + 8 + 11 + 9 + 6) 
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Capacities of Cuts
• Capacity of a -cut  is the sum of the capacities of 

edges leaving : 

•
 

• A dual problem to max-flow: 

• Find an -cut of minimum capacity 

• Claim.  Let  be any s-t flow and  be any s-t cut then 

(s, t) (S, T)
S

c(S, T) = ∑
v∈S,w∈T

f(v → w)

(s, t)

f (S, T)
v( f ) ≤ c(S, T)



Relationship: Flows and Cuts
• Claim.  Let  be any s-t flow and  be any s-t cut then 

 

• Proof.

•  
 

 

f (S, T)
v( f ) ≤ c(S, T)

v( f ) = fout(S) − fin(S)

≤ fout(S) = ∑
v∈S,w∈T

f(v → w)

≤ ∑
v∈S,w∈T

c(v, w) = c(S, T)



Max-Flow Min-Cut Theorem
• A beautiful, powerful relationship between these two 

problems in given by the following theorem 

• Theorem.  Given a flow network , let  be an -flow 
and let  be any -cut of  then, 
 

 if and only if 
 
 is a flow of maximum value and  is a cut of minimum 

capacity. 

• Informally, in a flow network the max-flow = min-cut.

G f (s, t)
(S, T) (s, t) G

v( f ) = c(S, T)

f (S, T)



Max-Flow Min-Cut Theorem
• We will prove the max-flow min-cut their by construction 

• Designing a max-flow algorithm, proving its optimality 
and showing the max-flow min-cut theorem holds 

• Called the Ford-Fulkerson Algorithm 

• First, we start with a greedy approach



Towards a Max-Flow Algorithm
• Greedy strategy: 

• Start with  for each edge 

• Find an  path  where each edge has 
 

• “Augment” flow (as much as possible) along path  

• Repeat until you get stuck 

• Let’s take an example

f(e) = 0

s ↝ t P
f(e) < c(e)

P



Towards a Max-Flow Algorithm
• Start with  for each edge 
• Find an  path  where each edge has 

 
• “Augment” flow (as much as possible) along path  
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

s t
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Towards a Max-Flow Algorithm
• Start with  for each edge 
• Find an  path  where each edge has 

 
• “Augment” flow (as much as possible) along path  
• Repeat until you get stuck

f(e) = 0
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P

s t
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Towards a Max-Flow Algorithm
• Start with  for each edge 
• Find an  path  where each edge has 

 
• “Augment” flow (as much as possible) along path  
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

s t
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Towards a Max-Flow Algorithm
• Start with  for each edge 
• Find an  path  where each edge has 

 
• “Augment” flow (as much as possible) along path  
• Repeat until you get stuck
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Towards a Max-Flow Algorithm
• Start with  for each edge 
• Find an  path  where each edge has 

 
• “Augment” flow (as much as possible) along path  
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

s t
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Towards a Max-Flow Algorithm
• Start with  for each edge 
• Find an  path  where each edge has 

 
• “Augment” flow (as much as possible) along path  
• Repeat until you get stuck
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Towards a Max-Flow Algorithm
• Start with  for each edge 
• Find an  path  where each edge has 

 
• “Augment” flow (as much as possible) along path  
• Repeat until you get stuck
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P

s t
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Towards a Max-Flow Algorithm
• Start with  for each edge 
• Find an  path  where each edge has 

 
• “Augment” flow (as much as possible) along path  
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P
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Towards a Max-Flow Algorithm
• Start with  for each edge 
• Find an  path  where each edge has 

 
• “Augment” flow (as much as possible) along path  
• Repeat until you get stuck

f(e) = 0
s ↝ t P

f(e) < c(e)
P

max-flow value = 19
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Why Greedy Fails
• Problem: greedy can never “undo” a bad flow decision 

• Consider the following flow network 

• Unique max flow has  

• Greedy could choose  as first  
 
 
 
 
 
 

• Key:  Need a mechanism to “undo” previous flow decisions 

f(v → w) = 0
s → v → w → t P

s

t

w

v

1

2

2

22
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