Introduction to
Network Flows



Overview So Far & Going Forward

e 50 far, algorithmic paradigms:

* [raversal-based graph algorithms

e Greedy algorithms

* Divide and conqguer/ Recursion

 Dynamic Programming/ Recursion without Repetition
* Next: “Flows™ — model a variety of optimization problems
o After — Intractability (P vs NP, NP hard, NP complete, etc.)

« Finally — Approximation and Randomized Algorithms



Network Flow History

* In 1950s, US military researchers Harris and Ross wrote a

classified report about the rail network linking Soviet Union and
Easter Europe

* Vertices were the geographic regions
 Edges were railway links between the regions

* Edge weights were the rate at which material could be
shipped from one region to next

e Ross and Harris determined:

* maximum amount of stuff that could be moved from Russia to
Europe (max flow)

* cheapest way to disrupt the network by removing rall links
(min cut)



Network Flow History

11973
'SEGRET gp'

1 oricins l

Fig. 7 — Traffic pattern: enfire
network available

Legend:
~— .+ —— |nternational boundary

@ Railway operating division
9

<«{j2]~ Copacity: !2 each way per day.
fzquired flow of O per day voward

destinations {in direction of arrow;
with equivalent number of returning
trains in opposite direction

Al}l capacities in \/loo'c?z of tonsf €GCh way per. duy .

Orlgms. Divisions 2, 3W, 3E, 26, I3N, i3S,
12,52 (USSR), and Roumania

‘Pestinctions: Divisions 3, 6,9 (Poland); ’ X
B { Czechoslovavakial; and 2, 3 {Austria}

" “Aiternativa destinations: Germany or East
. Germany : *

" Note 11X at Division 9, Poland -

Image Credits: — Jeff Erickson’s book and T[homas] E. Harris and F[rank] S. Ross. Fundamentals of a method for evaluating rail net capacities. The RAND Corporation, Research
Memorandum RM-1517, October 24, 1955. United States Government work in the public domain. http://www.dtic.mil/dtic/tr/fulltext/u2/093458.pdf



What's a Flow Network?

. A flow network is just a directed graph G = (V, E) with a
« A source is a vertex s with in degree O

« A sink is a vertex t with out degree 0

« Edge capacities c(e) > O foreachedgee € E

capacity




Simplifying Assumptions/Notations

o Assume that each node v is on some s-f path, that is,
§ ~ v~ t exists, forany vertex v € V

« Implies G is connected, andm > n — 1
 Assume capacities are integers

o For simplifying expositions, assume c(e) = 0 if e = (u, v) is
not an edge, that is, for u,v € Vand edge (u,v) &€ E

* Non-existent edges/capacities not shown in figures

 Directed edge (u,v) writtenas u — v



What’s a Flow?

« Given a flow network, an (s, t)-flow or just flow (if source §
and sink t are clear from context) f: E — Z7 that satisfies:

Flow conservation: f, (v) =/, (v), forv # s,1 where
fu) =) flu = v)andf,, () = ) flv - w)

That is, flow into v equals flow out of v

To simplify notation, define f(u — v) = 0 if there is no edge
fromu tov



What Is a Feasible Flow

« An (s, ?)-flow is feasible if it satisfies the capacity
constraints of the network, that is,:

[Capacity constraint] foreache € E, 0 < f(e) < c(e)

flow capacity

e

)
messss——— 5 /G qr /

7
> 0/15

¢ 10
o

0 =P ¢
W

10/16



Value of a Flow

« Definition. The value of a flow f, written v(f), is . .($).
. Lemma. f, (s) = /. (1)

. Proof. Letf(E)= ) f(e)

eck

_ Then, D ) =AE) = Y fraV)

veV veV

. Foreveryv#s,t:f (v)=f,(v), leaving only
Jin(8) * Joul$) = Jin(O) + JoulD)

« Butf, (s)=f (£)=0H
« Corollary. v(f) =, (%)



Max-Flow Problem

e Given a flow network, find a flow of maximum value.

8/9

Q 2 ¢

N\ S ~

\ / /
/\Q 5 0
Q<5/5—) 8/8 10/ 10
& 5 \\Q

/J‘ /6 \Q

~
value = 10 +5 + 13 = (28) \



Cuts in Flow Networks

. Recall. Acut (S, T) in a graph is a partition of vertices such
that SUT =V , SNT=gandJs, T are non-empty.

. Definition. An (s, f)-cutisacut(S,7)st.s€ Sandre T.



Cuts in Flow Networks

. Forany flow fon G = (V, E) and any (s, t)-cut (S, T'), let

 JoullS) = Z f(v = w) (sum of flow ‘leaving’ S)

veS,weT

. f:.(S) = Z f(w — v) (sum of flow ‘entering’ S)

veSweT

. Note: [, (S)=/f . (T)andf. (S)=/f (T)

. Lemma. Value of a flow, v(f) =f,,(S) — f;,(S) is the net-
flow out of S, for any (s, ¢)-cut (S, T).



Cuts in Flow Networks

. Lemma. Value of a flow, v(f) =f,,(S) —f,,(S) is the net-
flow out of S, for any (s, ¢)-cut (S, T).

- Proof.

’ V(f) =f0ut(s)
V) =l = = D ) =) (Adding some zeros)

vesS

PO CEIVEDINCEI) (By definition)

vesS w U

Z fv - w)— Z f(u — v) (all other edges cancel in pairs)

veS,weT veS,ueT



Capacities of Cuts

. Capacity of a (s, 1)-cut (S, T) is the sum of the capacities of
edges leaving S

S D)= ) v w)

veS.weT

/!

10

v
>F8q t

J m/
\ 4
capacity=10+8+10= ' <




Network flow: quiz 1

Which is the capacity of the given st-cut?
A. 11 20+25-8-11-9-06)
B. 34 8+11+9+6)
C. 45 (20 +25)
D

79 20+25+8+11+9+6)

capacity




Capacities of Cuts

. Capacity of a (s, 1)-cut (S, T) is the sum of the capacities of
edges leaving S

S = ), fv=w)

veS.weT

- A dual problem to max-flow:
. Find an (s, t)-cut of minimum capacity

. Claim. Let f be any s-t flow and (S, T') be any s-t cut then
v(f) < ¢S, T)



Relationship: Flows and Cuts

. Claim. Let fbe any s-t flow and (S, T') be any s-t cut then
v(f) < (S, T)

- Proof.

y V(f) zfout(S) _fm(S)

<Lu® =) fr—w)

veS,weT

< Z clv,w) = c(S,T)

veSweT



Max-Flow Min-Cut Theorem

* A beautitul, powerful relationship between these two
problems in given by the following theorem

. Theorem. Given a flow network G, let f be an (s, 1)-flow
and let (S, T) be any (s, t)-cut of G then,

v(f) = c(S,T) if and only if

fis a flow of maximum value and (S, T') is a cut of minimum
capacity.

Informally, in a tlow network the max-flow = min-cut.



Max-Flow Min-Cut Theorem

* We will prove the max-flow min-cut their by construction

* Designing a max-tlow algorithm, proving its optimality
and showing the max-flow min-cut theorem holds

» Called the Ford-Fulkerson Algorithm

o First, we start with a greedy approach



Towards a Max-Flow Algorithm

* (Greedy strategy:
o Start with f(e) = O for each edge

« Find ans ~ t path P where each edge has
J(e) < c(e)
« “Augment” flow (as much as possible) along path P

 Repeat until you get stuck

o |Let's take an example



Towards a Max-Flow Algorithm

o Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has

Je) < c(e)

« “Augment” flow (as much as possible) along path P

 Repeat until you get stuck

flow capacity
flow network G and flow f \ /
O O
0
O 0/2 0, 0/6 <
\ & (0]
Q value of flow

/
@ 0/10 Q 0/9 Q 0/10 @ 0



Towards a Max-Flow Algorithm

o Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has

Je) < c(e)

« “Augment” flow (as much as possible) along path P

 Repeat until you get stuck

flow capacity
Q\ ois ——@
N 0/2 o, 0/6 o

\ value of flow
JOHO Q 0/9 O—OHO —)@ 0



Towards a Max-Flow Algorithm

o Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has

Je) < c(e)

« “Augment” flow (as much as possible) along path P

 Repeat until you get stuck

flow capacity
Q\ ois ——@
N 0/2 ¢, 0/6 o

\ value of flow
JOHO Q 0/9 0—8/10 —)@ 8



Towards a Max-Flow Algorithm

o Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has

Je) < c(e)

« “Augment” flow (as much as possible) along path P

 Repeat until you get stuck

flow capacity
? o' ——O)
N 0/2 ¢, 0/6 o

\ S ‘0
> i value of flow

/
@/0/10 O 0/9 )O— 8/10 —)@ 8




Towards a Max-Flow Algorithm

o Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has

Je) < c(e)

« “Augment” flow (as much as possible) along path P

 Repeat until you get stuck

flow capacity
? o' ——O)
Q/ o
WV 2/2 S g 0/6 “7

Q
N i value of flow

@/ O sio — > O— w0—@ T




Towards a Max-Flow Algorithm

o Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has

Je) < c(e)

« “Augment” flow (as much as possible) along path P

 Repeat until you get stuck

flow capacity
@. 0r4 Q\
Q o
WV 2/2 S g 0/6 “7

S i

\ value of flow
@—0/10 —)Q 2/9 )O 10/10 @ 10




Towards a Max-Flow Algorithm

o Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has

Je) < c(e)

« “Augment” flow (as much as possible) along path P

 Repeat until you get stuck

flow capacity
@. 0r4 Q\
Q 6
WV 2/2 S g 6/6 “7

S i

\ value of flow
®_6”0 _’O 8/9 >© 10/10 @ 16




Towards a Max-Flow Algorithm

o Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has

Je) < c(e)

« “Augment” flow (as much as possible) along path P

 Repeat until you get stuck

ending flow value = 16 flow }apacity
®. ®.
Q S S
,\Q\\ 2/2 /6’ 6/6 ;0

value of flow

/
@ &4 10 Q 8/9 Q 10/10 @ 16



Towards a Max-Flow Algorithm

o Start with f(e) = O for each edge
« Find ans ~ t path P where each edge has

Je) < c(e)

« “Augment” flow (as much as possible) along path P

 Repeat until you get stuck

max-flow value = 19

O —0

value of flow

@ 9/10 Q 9/9 Q 10/10 @ 19



Why Greedy Fails

* Problem: greedy can never “undo” a bad flow decision
e Consider the following flow network
 Unique max flow has f(v = w) = 0

« Greedy could choose s > v = w — tasfirst P

0. 2 0,
() 2 )

 Key: Need a mechanism to “undo” previous flow decisions



Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdi/

04GreedyAlgorithmsl.pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)



https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

