
Shortest Paths & Wrapping 
Up Dynamic Programming



Shortest Paths: Cyclic Graphs
• Problem. Find the cost of the shortest path from  to 

any node  in a directed graph  

•  can have cycles with non-negative cost (but 
assuming no negative cycles for now) 

• Subproblem:

• : (optimal) cost of shortest path from  to  
using at most  edges 
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Shortest Paths: Cyclic Graphs
• Subproblem.  : cost of shortest path from  to  

using at most  edges  
• Base cases? 

•  for any  

•  for any  

• Final answer/output for shortest path cost to node ?  

• , why?
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Shortest Paths: Cyclic Graphs
• How many edges can be on a shortest path between 

two nodes? 
• Can there be a cycle on a shortest path? 

• We assumed no negative cycles  
• What about a positive cycle? 
• What about a cycle of cost 0? 

• Can remove them without hurting cost 
• Thus, we can assume shortest paths are simple  

• Max number of edges on a simple path? 

• n − 1



Shortest Paths: Recurrence
• Subproblem.  : cost of shortest path from  to  

using at most  edges  
• Base cases? 

•  for any  

•  for any  

• Output  
• How do we formulate the recurrence? 

• Case 1. Shortest path to  uses  edges 

• Case 2. Shortest path to  uses exactly  edges
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Shortest Paths: Recurrence
• Subproblem.  : cost of shortest path from  to  

using at most  edges  
• Base cases? 

•  for any  

•  for any  

• Output  
• Recurrence: 

 

• Called the Bellman-Ford-Moore algorithm
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Shortest Paths: Recurrence
 

• Memoization: Two-dimensional array 
• Evaluation order: 

•  
• Vertices can be evaluated in any order 

• Analysis 
• Space? 
• Running time?

D(v, i) = min{D(v, i − 1), min
(u,v)∈E

{D(u, i − 1) + wuv}}

i : 1 → n − 1



Shortest Paths: Recurrence
 

• Memoization: Two-dimensional array 
• Evaluation order: 

•  
• Vertices can be evaluated in any order 

• Analysis 

• Space?  entries in table 

• Running time?  

• Each entry in table takes  to compute 

•  entries 

D(v, i) = min{D(v, i − 1), min
(u,v)∈E

{D(u, i − 1) + wuv}}

i : 1 → n − 1

O(n2)
O(n3)

O(n)
O(n2)



Bellman-Ford: Improved Analysis
• Recurrence for  

 

• For a given ,   looks at each incoming edge of  

• Takes  accesses to the table 

• For a given  filling  takes 

•
 accesses  

• This is at most  for  
(assuming  is connected) 

• To fill  rows, overall running time is  

D(v, i)
D(v, i) = min{D(v, i − 1), min

(u,v)∈E
{D(u, i − 1) + wuv}}

i, v d[v, i] v
indegree(v)

i, d[ − , i]
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Bellman-Ford-Moore Correctness
• Lemma. (Correctness)  is the cost of a shortest 

path from  to  using at most  edges 

• Proof. [By induction on ]  

• Base case:  

•  for all ,  for  

• Induction hypothesis:  
Assume that  is the cost of a shortest path from 
 to  using at most  edges 

• Inductive step: prove for   

• Observe:  never increases (only goes down)
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• Let  be the shortest  path with at most  edges. 

• Let  be last edge on , and  be the subpath from  

• Then  has at most  edges, and must be shortest  path  

• By inductive hypothesis,  

• We have  

•  

• Thus,  

•  cannot be strictly less than   

•  is based on an actual path to  in the algorithm 

• Thus,    

P s ↝ v i + 1
(u, v) P Q s ↝ u

Q i s ↝ u
d[u, i] = w(Q)

d[v, i + 1] = min{d[v, i], d[u, i] + w[u, v]}
d[u, i] + w[u, v] = w(Q) + w[u, v] = w(P)

d[v, i + 1] ≤ w(P)
d[v, i + 1] w(P)
d[v, i + 1] v

d[v, i + 1] = w(P) ∎

Bellman-Ford-Moore Correctness



Extracting Shortest Path
• Once we have the shortest path table, we can extract 

the actual shortest path in  time  

• Consider edges with  
• Or we can do extra booking-keeping during the 

dynamic program to store pointers to path  

• Maintain  that points to node leading to  
on shortest path  using at most  edges

O(m)
d[v, i] = d[u, i − 1] + wuv

pred[v, i] v
s ↝ v i



Improving Space
• Observation.  only depends on  

• Use a one dimensional array , which stores the 
cost of the shortest  path found so far 

• Maintain  that points to node leading to  on 
shortest path  found so far 

• Keep improving estimate (  now acts 
like a counter) 

• (Optimization) If no estimate  changes during an 
iteration, we can just stop  

d[ − , i] d[ − , i − 1]
d[v]

s − v
pred[v] v

s ↝ v
i → 1,…, n − 1

d[v]



Bellman-Ford-Moore Algorithm
• Initialize:  

• For each node : d[v] ← ∞, pred[v] ← null 
• Initialize: d[s] ← 0 
• For i = 1 to n – 1   # no of passes 

• For each node v 
• For each edge (v, w) ∈ E : 

• If d[w] > d[v] +w[v, w]: 
• d[w] ← d[v] +w[v, w] 
• pred[w] ← v

v ≠ s



Detecting a Negative Cycle
• Problem.  Given a weighted directed graph with edge 

weights  find if it contains a negative cycle 

• Let us solve a slightly different problem first 

• Given a graph  and source , find if there is negative 
cycle on a  path for any node  

• Suppose there is a negative cycle on a  path 

• Then   

• If  for every node  then no 
negative cycles exits!  Why? 

• Table values converge  shortest  path exists

we
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Detecting a Negative Cycle

• Lemma. If  then any shortest 
 path contains a negative cycle. 

• Proof. [By contradiction] 

• Since , the shortest  
path has exactly  edges 

• By pigeonhole principle, the path must contain a 
repeated node— let the cycle be  

• If  has non-negative weight, removing it would give 
us a shortest path with less than  edges 

D(v, n) < D(v, n − 1)
s ↝ v

D(v, n) < D(v, n − 1) s ↝ v
n

W
W

n ⇒⇐



Detecting a Negative Cycle
• Now we know how to detect negative cycles on a 

shortest path from  to some node  
• How do we solve the problem in general (that is, given a 

graph does it have any negative cycle?) 
• Idea: Problem reduction! 

• Given graph , add a source  and connect it to all 
vertices in  with edge weight  

• Let the new graph be  

•  has a negative cycle iff  has a negative cycle!
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More DP: Dividing Work
• Suppose we have to scan through a shelf of books, and 

this task can be split between  workers 
• We do not want to reorder/rearrange the books, so 

instead we divide the shelf into  regions 
• Each worker is assigned one of the regions 
• What is the fairest way to divide the shelf up?
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More DP: Dividing Work
• Suppose we have to scan through a shelf of books, and 

this task can be split between  workers 
• We do not want to reorder/rearrange the books, so 

instead we divide the shelf into  regions 
• Each worker is assigned one of the regions 
• What is the fairest way to divide the shelf up?

k

k

• If the books are equal length, we can just partition 
into equal sizes regions 

• What if books are not equal size?  
• How can we find the fairest partition of work?



The Linear Partition Problem
• Input.  A input arrangement  of nonnegative integers 

 and an integer  

• Problem.  Partition  into  ranges such that the 
maximum sum over all the ranges is minimized 

• Example.
• Consider the following arrangement  

 

• Suppose , where should we partition to 
minimize the maximum sum over all ranges?

S
{s1, …, sn} k

S k

100 200 300 400 500 600 700 800 900

k = 3



The Linear Partition Problem
• Input.  A input arrangement  of nonnegative integers 

 and an integer  

• Problem.  Partition  into  ranges such that the 
maximum sum over all the ranges is minimized 

• Example.
• Consider the following arrangement  

 

• Suppose , where should we partition to 
minimize the maximum sum over all ranges?  

S
{s1, …, sn} k

S k

100 200 300 400 500 600 700 800 900

k = 3

100 200 300 400 500 | 600 700 | 800 900



Recursive Formulation
• Notice that the th partition starts after we place the  

th “divider” 
• Let us consider an optimal solution, where can it have the 

last divider? 

• Between some elements, suppose between th and 
the element where  

• What is the cost of placing the last divider here? Max of: 

•
Cost of the last partition   

• Cost of the optimal way to partition the elements to the 
“left” — this is a smaller version of the same problem!

k
(k − 1)

i
(i + 1) 1 ≤ i ≤ n

n

∑
j=i+1

sj



Dynamic Programming Recurrence
• Subproblem?  

•  be the minimum cost over all partitions of 
 into  ranges 

• Base cases? 
•  for all  

•
 for all  

• Recurrence? 

•
 

• Final solution:  

M(i, j)
{s1, …, si} j

M(1, j) = s1 1 ≤ j ≤ k

M(i, 1) =
i

∑
t=1

st 1 ≤ i ≤ n

M(i, j) = min
1≤i′�≤i

max{M(i′�, j − 1),
i

∑
t=i′ �+1

st}

M(n, k)



Running Time

•
 

• Final solution:   
• Evaluation order? Row major order 
• Running time? 

• Size of table:  
• How long to compute a single cell? 

• Depends on  other cells 

•  time

M(i, j) = min
1≤i′�≤i

max{M(i′�, j − 1),
i

∑
t=i′ �+1

st}

M(n, k)

O(k ⋅ n)

n
O(n2 ⋅ k)



Running Time
• Running time 

• Size of table:  
• How long to compute a single cell? 

• Depends on  other cells 

•  time 
• Is this a pseudo polynomial running time? 

• How big can  get? 

• At most  non-empty partitions of  elements 

•  algorithm in the worst case

O(k ⋅ n)

n
O(n2 ⋅ k)

k
n n

O(n3)



Dynamic Programming Practice
• Longest Common Subsequence Problem 

• We are given two strings: string  of length , and string 
 of length .  

• Our goal is to produce their longest common 
subsequence: the longest sequence of characters that 
appear left-to-right (but not necessarily in a contiguous 
block) in both strings. 

• For example, consider: 
• A = abazdc 
• B = bacbad  

• In this case, the LCS has length 4 and is the string abad

A n
B m
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