
Shortest Paths & Wrapping
Up Dynamic Programming

Shortest Paths: Cyclic Graphs
• Problem. Find the cost of the shortest path from to

any node in a directed graph

• can have cycles with non-negative cost (but
assuming no negative cycles for now)

• Subproblem:

• : (optimal) cost of shortest path from to
using at most edges

s
v G

G

D(v, i) s v
i

Shortest Paths: Cyclic Graphs
• Subproblem. : cost of shortest path from to

using at most edges
• Base cases?

• for any

• for any

• Final answer/output for shortest path cost to node ?

• , why?

D(v, i) s v
i

D(s, i) = 0 i
D(v,0) = ∞ v ≠ s

v
D(v, n − 1)

Shortest Paths: Cyclic Graphs
• How many edges can be on a shortest path between

two nodes?
• Can there be a cycle on a shortest path?

• We assumed no negative cycles
• What about a positive cycle?
• What about a cycle of cost 0?

• Can remove them without hurting cost
• Thus, we can assume shortest paths are simple

• Max number of edges on a simple path?

• n − 1

Shortest Paths: Recurrence
• Subproblem. : cost of shortest path from to

using at most edges
• Base cases?

• for any

• for any

• Output
• How do we formulate the recurrence?

• Case 1. Shortest path to uses edges

• Case 2. Shortest path to uses exactly edges

D(v, i) s v
i

D(s, i) = 0 i
D(v,0) = ∞ v ≠ s

D(v, n − 1)

v ≤ i − 1
v i

Shortest Paths: Recurrence
• Subproblem. : cost of shortest path from to

using at most edges
• Base cases?

• for any

• for any

• Output
• Recurrence:

• Called the Bellman-Ford-Moore algorithm

D(v, i) s v
i

D(s, i) = 0 i
D(v,0) = ∞ v ≠ s

D(v, n − 1)

D(v, i) = min{D(v, i − 1), min
(u,v)∈E

{D(u, i − 1) + wuv}}

Shortest Paths: Recurrence

• Memoization: Two-dimensional array
• Evaluation order:

•
• Vertices can be evaluated in any order

• Analysis
• Space?
• Running time?

D(v, i) = min{D(v, i − 1), min
(u,v)∈E

{D(u, i − 1) + wuv}}

i : 1 → n − 1

Shortest Paths: Recurrence

• Memoization: Two-dimensional array
• Evaluation order:

•
• Vertices can be evaluated in any order

• Analysis

• Space? entries in table

• Running time?

• Each entry in table takes to compute

• entries

D(v, i) = min{D(v, i − 1), min
(u,v)∈E

{D(u, i − 1) + wuv}}

i : 1 → n − 1

O(n2)
O(n3)

O(n)
O(n2)

Bellman-Ford: Improved Analysis
• Recurrence for

• For a given , looks at each incoming edge of

• Takes accesses to the table

• For a given filling takes

•
 accesses

• This is at most for
(assuming is connected)

• To fill rows, overall running time is

D(v, i)
D(v, i) = min{D(v, i − 1), min

(u,v)∈E
{D(u, i − 1) + wuv}}

i, v d[v, i] v
indegree(v)

i, d[− , i]

∑
v∈V

indegree(v)

O(n + m) = O(m) m ≥ n − 1
G

n O(nm)

Bellman-Ford-Moore Correctness
• Lemma. (Correctness) is the cost of a shortest

path from to using at most edges

• Proof. [By induction on]

• Base case:

• for all , for

• Induction hypothesis:  
Assume that is the cost of a shortest path from
 to using at most edges

• Inductive step: prove for

• Observe: never increases (only goes down)

d[v, i]
s v i

i
i = 0

d[s, i] = 0 i d[u,0] = ∞ u ≠ s

d[v, i]
s v i

i + 1
d[v, i]

• Let be the shortest path with at most edges.

• Let be last edge on , and be the subpath from

• Then has at most edges, and must be shortest path

• By inductive hypothesis,

• We have

•

• Thus,

• cannot be strictly less than

• is based on an actual path to in the algorithm

• Thus,

P s ↝ v i + 1
(u, v) P Q s ↝ u

Q i s ↝ u
d[u, i] = w(Q)

d[v, i + 1] = min{d[v, i], d[u, i] + w[u, v]}
d[u, i] + w[u, v] = w(Q) + w[u, v] = w(P)

d[v, i + 1] ≤ w(P)
d[v, i + 1] w(P)
d[v, i + 1] v

d[v, i + 1] = w(P) ∎

Bellman-Ford-Moore Correctness

Extracting Shortest Path
• Once we have the shortest path table, we can extract

the actual shortest path in time

• Consider edges with
• Or we can do extra booking-keeping during the

dynamic program to store pointers to path

• Maintain that points to node leading to
on shortest path using at most edges

O(m)
d[v, i] = d[u, i − 1] + wuv

pred[v, i] v
s ↝ v i

Improving Space
• Observation. only depends on

• Use a one dimensional array , which stores the
cost of the shortest path found so far

• Maintain that points to node leading to on
shortest path found so far

• Keep improving estimate (now acts
like a counter)

• (Optimization) If no estimate changes during an
iteration, we can just stop

d[− , i] d[− , i − 1]
d[v]

s − v
pred[v] v

s ↝ v
i → 1,…, n − 1

d[v]

Bellman-Ford-Moore Algorithm
• Initialize:

• For each node : d[v] ← ∞, pred[v] ← null
• Initialize: d[s] ← 0
• For i = 1 to n – 1 # no of passes

• For each node v
• For each edge (v, w) ∈ E :

• If d[w] > d[v] +w[v, w]:
• d[w] ← d[v] +w[v, w]
• pred[w] ← v

v ≠ s

Detecting a Negative Cycle
• Problem. Given a weighted directed graph with edge

weights find if it contains a negative cycle

• Let us solve a slightly different problem first

• Given a graph and source , find if there is negative
cycle on a path for any node

• Suppose there is a negative cycle on a path

• Then

• If for every node then no
negative cycles exits! Why?

• Table values converge shortest path exists

we

G s
s ↝ v v

s ↝ v
lim
i→∞

D(v, i) = − ∞

D(v, n) = D(v, n − 1) v

⟹ s ↝ v

Detecting a Negative Cycle

• Lemma. If then any shortest
 path contains a negative cycle.

• Proof. [By contradiction]

• Since , the shortest
path has exactly edges

• By pigeonhole principle, the path must contain a
repeated node— let the cycle be

• If has non-negative weight, removing it would give
us a shortest path with less than edges

D(v, n) < D(v, n − 1)
s ↝ v

D(v, n) < D(v, n − 1) s ↝ v
n

W
W

n ⇒⇐

Detecting a Negative Cycle
• Now we know how to detect negative cycles on a

shortest path from to some node
• How do we solve the problem in general (that is, given a

graph does it have any negative cycle?)
• Idea: Problem reduction!

• Given graph , add a source and connect it to all
vertices in with edge weight

• Let the new graph be

• has a negative cycle iff has a negative cycle!

s v

G s
G 0

G′�
G G′�

More DP: Dividing Work
• Suppose we have to scan through a shelf of books, and

this task can be split between workers
• We do not want to reorder/rearrange the books, so

instead we divide the shelf into regions
• Each worker is assigned one of the regions
• What is the fairest way to divide the shelf up?

k

k

More DP: Dividing Work
• Suppose we have to scan through a shelf of books, and

this task can be split between workers
• We do not want to reorder/rearrange the books, so

instead we divide the shelf into regions
• Each worker is assigned one of the regions
• What is the fairest way to divide the shelf up?

k

k

• If the books are equal length, we can just partition
into equal sizes regions

• What if books are not equal size?
• How can we find the fairest partition of work?

The Linear Partition Problem
• Input. A input arrangement of nonnegative integers

 and an integer

• Problem. Partition into ranges such that the
maximum sum over all the ranges is minimized

• Example.
• Consider the following arrangement  

• Suppose , where should we partition to
minimize the maximum sum over all ranges?

S
{s1, …, sn} k

S k

100 200 300 400 500 600 700 800 900

k = 3

The Linear Partition Problem
• Input. A input arrangement of nonnegative integers

 and an integer

• Problem. Partition into ranges such that the
maximum sum over all the ranges is minimized

• Example.
• Consider the following arrangement  

• Suppose , where should we partition to
minimize the maximum sum over all ranges?  

S
{s1, …, sn} k

S k

100 200 300 400 500 600 700 800 900

k = 3

100 200 300 400 500 | 600 700 | 800 900

Recursive Formulation
• Notice that the th partition starts after we place the  

th “divider”
• Let us consider an optimal solution, where can it have the

last divider?

• Between some elements, suppose between th and
the element where

• What is the cost of placing the last divider here? Max of:

•
Cost of the last partition

• Cost of the optimal way to partition the elements to the
“left” — this is a smaller version of the same problem!

k
(k − 1)

i
(i + 1) 1 ≤ i ≤ n

n

∑
j=i+1

sj

Dynamic Programming Recurrence
• Subproblem?

• be the minimum cost over all partitions of
 into ranges

• Base cases?
• for all

•
 for all

• Recurrence?

•

• Final solution:

M(i, j)
{s1, …, si} j

M(1, j) = s1 1 ≤ j ≤ k

M(i, 1) =
i

∑
t=1

st 1 ≤ i ≤ n

M(i, j) = min
1≤i′�≤i

max{M(i′�, j − 1),
i

∑
t=i′ �+1

st}

M(n, k)

Running Time

•

• Final solution:
• Evaluation order? Row major order
• Running time?

• Size of table:
• How long to compute a single cell?

• Depends on other cells

• time

M(i, j) = min
1≤i′�≤i

max{M(i′�, j − 1),
i

∑
t=i′ �+1

st}

M(n, k)

O(k ⋅ n)

n
O(n2 ⋅ k)

Running Time
• Running time

• Size of table:
• How long to compute a single cell?

• Depends on other cells

• time
• Is this a pseudo polynomial running time?

• How big can get?

• At most non-empty partitions of elements

• algorithm in the worst case

O(k ⋅ n)

n
O(n2 ⋅ k)

k
n n

O(n3)

Dynamic Programming Practice
• Longest Common Subsequence Problem

• We are given two strings: string of length , and string
 of length .

• Our goal is to produce their longest common
subsequence: the longest sequence of characters that
appear left-to-right (but not necessarily in a contiguous
block) in both strings.

• For example, consider:
• A = abazdc
• B = bacbad

• In this case, the LCS has length 4 and is the string abad

A n
B m

Acknowledgments
• Some of the material in these slides are taken from

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

