Shortest Paths & Wrapping
Up Dynamic Programming

Shortest Paths: Cyclic Graphs

- Problem. Find the cost of the shortest path from s to
any node v in a directed graph G

. (G can have cycles with non-negative cost (but
assuming no negative cycles for now)

+ Subproblem:

e D(v,1): (optimal) cost of shortest path from s to v
using at most 1 edges

Shortest Paths: Cyclic Graphs

« Subproblem. D(v,i): cost of shortest path from s to v
using at most 1 edges

* Base cases”?
e D(s,i) =0foranyi
e D(v,0) = o0 forany v # s
o Final answer/output for shortest path cost to node v?

e D(v,n—1), why?

Shortest Paths: Cyclic Graphs

 How many edges can be on a shortest path between
two nodes”?

 Can there be a cycle on a shortest path?
 We assumed no negative cycles
 \What about a positive cycle?
 What about a cycle of cost 07

* Can remove them without hurting cost

* Thus, we can assume shortest paths are simple
 Max number of edges on a simple path?

e n—1

Shortest Paths: Recurrence

« Subproblem. D(v,i): cost of shortest path from s to v
using at most 1 edges

* Base cases”
e D(s,i) =0foranyi
e D(v,0) = o0 forany v # s
« Output D(v,n — 1)
 How do we formulate the recurrence?
« Case 1. Shortest pathto vuses <1i— 1 edges

« Case 2. Shortest path to v uses exactly 1 edges

Shortest Paths: Recurrence

« Subproblem. D(v,i): cost of shortest path from s to v
using at most 1 edges

* Base cases”

e D(s,i) =0foranyi

e D(v,0) = o0 forany v # s
« Output D(v,n — 1)
* Recurrence:

D(v,i) = min{D(v,i — 1), min {D(u,i—1)+w, }}
(u,v)eE

» Called the Bellman-Ford-Moore algorithm

Shortest Paths: Recurrence

D(v,i) = min{D(v,i — 1), min {D(u,i—1)+w,}}
(u,v)elE

 Memoization: Two-dimensional array

e Evaluation order:

eli:1—->n-1

e \ertices can be evaluated in any order
 Analysis

* Space”?

 Running time?

Shortest Paths: Recurrence

D(,i) = min{D(v,i — 1), min {D(u,i—1)+w,}}
(u,v)eE

 Memoization: Two-dimensional array

* Evaluation order:
ei:1->n-1
e \ertices can be evaluated in any order
* Analysis
. Space? O(n?) entries in table
. Running time? O(n°)
« Each entry in table takes O(n) to compute

. O(n?) entries

Bellman-Ford: Improved Analysis

« Recurrence for D(v, 1)

D(,i) =min{D(v,i — 1), min {D(u,i—1)+w,}}
(u,v)eE

« Foragiveni,v, d[v,i] looks at each incoming edge of v
« Takes indegree(v) accesses to the table
« Foragiveni, fillingd| — , 1] takes

Z indegree(v) accesses

veV

e ThisisatmostO(n+m) = O0O(m)form >n— 1
(assuming G is connected)

o To fill n rows, overall running time is O(nm)

Bellman-Ford-Moore Correctness

. Lemma. (Correctness) d[v, i] is the cost of a shortest
nath from s to v using at most 7 edges

. Proof. [By induction on 1]
. Basecase:i =0
. d|s,i] =0foralli, dlu0] = ocoforu #s

 Induction hypothesis:
Assume that d[v, i] is the cost of a shortest path from
s to v using at most 1 edges

. Inductive step: prove for i + 1

. Observe: d[v, i] never increases (only goes down)

Bellman-Ford-Moore Correctness

. Let P be the shortest s ~ v path with at most i + 1 edges.

. Let (i, v) be last edge on P, and Q be the subpath from s ~ u

. Then Q has at most i edges, and must be shortest s ~r u path
. By inductive hypothesis, d[u, i] = w(Q)
. We haved|v,i+ 1] = min{d|v, i],d[u, i] + wlu, v]}

. dlu,i] +wlu,v]l = w(Q) + wlu, v] = w(P)

. Thus, d[v,i+ 1] < w(P)

. d[v,1+ 1] cannot be strictly less than w(P)

. d[v,i+ 1] is based on an actual path to v in the algorithm
. Thus, d[v,i+ 1] =w(P) N

Extracting Shortest Path

* Once we have the shortest path table, we can extract
the actual shortest path in O(m) time

 Consider edges with d|v,i] =dlu,i —1]+w,,

* Or we can do extra booking-keeping during the
dynamic program to store pointers to path

« Maintain pred|v, 1] that points to node leading to v
on shortest path s ~ v using at most 1 edges

Improving Space

. Observation. d[— ,i] only dependsond| —,i — 1]

. Use a one dimensional array d[v], which stores the
cost of the shortest s — v path found so far

. Maintain pred|[v] that points to node leading to v on
shortest path s ~ v found so far

. Keep improving estimate (I = 1,...,n — 1 now acts
ike a counter)

. (Optimization) If no estimate d|v]| changes during an
iteration, we can just stop

Bellman-Ford-Moore Algorithm

* |nitialize:
e For each node v # s: d[v] « oo, pred[v] « null
e |nitialize: d[s] «+ O
e Fori=1ton-1 # no of passes
* For each node v
e For each edge (v, w) e E:
o |t d[w]>d[v] +wW[v, w]:
e dlw] « d|v] +w|v, W]

e pred|(w] « v

Detecting a Negative Cycle

» Problem. Given a weighted directed graph with edge
weights w, find if it contains a negative cycle

» Let us solve a slightly ditferent problem first

. Given a graph G and source s, find if there is negative
cycle onas ~ v path for any node v

« SUppose there is a negative cycle onas ~ v path

‘hen Ilm D(v, 1) = — o0

[— 00
. 1f D(v,n) = D(v,n — 1) for every node v then no
negative cycles exits! Why?

- Table values converge = shortest s ~ v path exists

Detecting a Negative Cycle

. Lemma. If D(v, n) < D(v, n — 1) then any shortest
s ~ vy path contains a negative cycle.

- Proof. [By contradiction]

. Since D(v, n) < D(v, n — 1), the shortest s ~ v
path has exactly n edges

» By pigeonhole principle, the path must contain a
repeated node— let the cycle be W

. If W has non-negative weight, removing it would give
us a shortest path with less than n edges =&

Detecting a Negative Cycle

 Now we know how to detect negative cycles on a
shortest path from § to some node v

 How do we solve the problem in general (that is, given a
graph does it have any negative cycle?)

e |dea: Problem reduction!

« Given graph G, add a source s and connect it to all
vertices in G with edge weight 0

o Letthe new graph be G’

« G has a negative cycle iff G' has a negative cycle!

More DP: Dividing Work

Suppose we have to scan through a shelf of books, and
this task can be split between k workers

We do not want to reorder/rearrange the books, so
instead we divide the shelf into k regions

Each worker is assigned one of the regions

What is the fairest way to divide the shelf up?

')
)
-
-
e
-/
7

RETICAL PHYSICS
ASIC COURSE

ICS & ENGINEERING
{1 QA LR EF F RE/N C E

SOPHY

More DP: Dividing Work

Suppose we have to scan through a shelf of books, and
this task can be split between k workers

We do not want to reorder/rearrange the books, so
instead we divide the shelf into k regions

Each worker is assigned one of the regions

What is the fairest way to divide the shelf up?

It the books are equal length, we can just partition
Into equal sizes regions

What if books are not equal size”

 How can we find the fairest partition of work?

The Linear Partition Problem

 Input. A input arrangement S of nonnegative integers
{81, ...,8,} and an integer k

« Problem. Partition S into k ranges such that the
maximum sum over all the ranges Is minimized

- Example.

e Consider the following arrangement

100 200 300 400 500 600 700 800 900

e Suppose k = 3, where should we partition to
minimize the maximum sum over all ranges”

The Linear Partition Problem

 Input. A input arrangement S of nonnegative integers
{81, ...,8,} and an integer k

« Problem. Partition S into k ranges such that the
maximum sum over all the ranges Is minimized

- Example.

e Consider the following arrangement

100 200 300 400 500 600 700 800 900

e Suppose k = 3, where should we partition to
minimize the maximum sum over all ranges”

100 200 300 400 500 | 600 700 | 800 900

Recursive Formulation

 Notice that the kth partition starts after we place the
(k — 1)th “divider”

et us consider an optimal solution, where can it have the
last divider?

Between some elements, suppose between ith and
(i + 1)the elementwhere 1 <1< n

What is the cost of placing the last divider here? Max of:

n
Cost of the last partition 2 S;
j=i+1

Cost of the optimal way to partition the elements to the
“‘left” — this is a smaller version of the same problem!

Dynamic Programming Recurrence

e Subproblem?

« M(,) be the minimum cost over all partitions of
1S5 ---»8;} into J ranges

e Base cases?
« M(1, j)=sforalll £j <k

) M(i, 1)=Zstforalllgi§n

=1

e Recurrence?

_ M(i.j) = min max{M@.j— 1),) s

1<i’<i »
=1'+1

 Final solution: M(n, k)

Running Time

_ M(i,j) = min max{M(’,j — 1), Z 5}

1<i’<i y
=1'+1

Final solution: M(n, k)
Evaluation order? Row major order
Running time”

« Size of table: O(k - n)

 How long to compute a single cell?

« Depends on n other cells
. O(n? - k) time

Running Time

Running time
. Size of table: O(k - n)
 How long to compute a single cell?

o Depends on n other cells
. O(n? - k) time
* |s this a pseudo polynomial running time?
. How big can k get?
« At most n non-empty partitions of n elements

. O(n?) algorithm in the worst case

Dynamic Programming Practice

* Longest Common Subsequence Problem

« We are given two strings: string A of length n, and string
B of length m.

e Qur goalis to produce their longest common
subsequence: the longest sequence of characters that

appear left-to-right (but not necessarily in a contiguous
block) in both strings.

 For example, consider:
A =abazdc
« B =Dbacbad
* In this case, the LCS has length 4 and is the string abad

Acknowledgments

e Some of the material in these slides are taken from

* Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdi/

04GreedyAlgorithmsl.pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

