
Depth-first Search and 
Directed Graphs



Story So Far
• Breadth-first search 
• Using breadth-first search for connectivity 
• Using bread-first search for testing bipartiteness 

BFS (G, s): 
Put s in the queue Q 
While Q is not empty 

Extract v from Q 
If v is unmarked 

Mark v 
For each edge (v, w): 

  Put w into the queue Q



The BFS Tree
• Can remember parent nodes (the node at level   

that lead us to a given node at level  ) 

BFS-Tree(G, s): 
Put (∅, s) in the queue Q 
While Q is not empty 

Extract (p, v) from Q 
If v is unmarked 

Mark v 
parent(v) = p 
For each edge (v, w): 

  Put (v, w) into the queue Q

i
i + 1



Spanning Trees
• Definition. A spanning tree of an undirected graph 

  is a connected acyclic subgraph of   that 
contains every node of  . 

• The tree produced by the BFS algorithm (with 
(  as edges) is a spanning tree of the 
component containing  .  

• The BFS spanning tree gives the shortest path from 
  to every other vertex in its component (we will 
revisit shortest path in a couple of lectures) 

• BFS trees in general are short and bushy
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Generalizing BFS: Whatever-First

If we change how we store the explored vertices (the 
data structure we use), it changes how we traverse 

Whatever-First-Search (G, s): 
Put s in the bag  
While bag is not empty 

Extract v from bag 
If v is unmarked 

Mark v 
For each edge (v, w): 

  Put w into the bag  

Depth-first search: when bag is a stack, not queue



Depth-first Search Example
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Depth-First Search: Recursive
• Perhaps the most natural traversal algorithm 
• Can be written recursively as well  
• Both versions are the same; can actually see the 

“recursion stack” in the iterative version



Depth-first Search: Stack
• Inserts and extracts to a stack take   time  
• Thus, overall running time is  

O(1)
O(n + m)



• DFS returns a spanning tree, similar to BFS 

• The spanning tree formed by parent edges in a DFS 
are usually long and skinny

DFS-Tree(G, s): 
Put (∅, s) in the stack S 
While S is not empty 

Extract (p, v) from S 
If v is unmarked 

Mark v 
parent(v) = p 
For each edge (v, w): 

  Put (v, w) into the stack S

Depth-First Search Tree



Depth-First Search Tree
Lemma. For every edge   in  , one of   or 
  is an ancestor of the other in  . 

RecursiveDFS(p, v): 
         If v is unmarked 
         Mark v 
         parent(v) = p   # (p, v) is a tree edge 

For each edge (v, w): 
  RecursiveDFS(v, w)

e = (u, v) G u
v T

Easier to think in terms of recursive definition



Depth-First Search Tree
Lemma. For every edge   in  , one of   or 
  is an ancestor of the other in  . 
Proof.  Obvious if edge   is in  .  Suppose edge   is 
not in  .  Without loss of generality, suppose DFS is 
called on   before  .  
• When the edge   is inspected    must have been 

already marked visited; Or else   
•   is not marked visited during the DFS call on   
• Must have been marked during a recursive call in 

DFS( ), thus   is a descendant of  

e = (u, v) G u
v T
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Directed Graphs
Notation. . 

• Edges have “orientation” 
• Edge  leaves node  and enters node  
• Nodes have “in-degree” and “out-degree” 
• No loops or multi-edges (why?) 

Terminology of graphs extend  
to directed graphs: directed  
paths, cycles, etc.

G = (V, E)

(u, v) u v



Directed Graphs in Practice
Web graph:  

• Webpages are nodes, hyperlinks are edges 
• Orientation of edges is crucial 
• Search engines use hyperlink structure to rank 

web pages  

Road network 
• Road: nodes 
• Edge: one-way street



Directed Graph Search
Directed reachability. Given a node  find all nodes 
reachable from . 

• Can use both BFS and DFS  
• Both visit exactly the set of nodes reachable from 

starting node 

s
s

s



Review: Equivalence Relation
Definition. A binary relation   on a set   is an 
equivalence relation on   if   has the following 
properties 

• Reflexive:   
• Symmetric:  
• Transitive: 

  

Question. Identify the properties in these relations:  
  (a) Lives-in-the-same-city-as, (b) Is-an-ancestor of

⋍ S
S ⋍

∀x ∈ S, x ⋍ x
∀x, y ∈ S, x ⋍ y ⟹ y ⋍ x

∀x, y, z ∈ S, x ⋍ y and y ⋍ x ⟹ x ⋍ z



Reachability & Equivalence Relation

In undirected graphs, reachability is an equivalence 
relation between pairs of vertices  

• Each node is reachable from itself (reflexive) 
• If   is reachable from  , then   is reachable from 

  (symmetric) 
• If   is reachable from  , and   is reachable from 

 , then then   is reachable from   (transitive)

v u u
v

v u u
w v w



Connectivity & Equivalence Classes

An equivalence relation   on a set   gives rise to 
equivalence classes  , also written as   

These equivalence classes have the following properties 
• For every   
• For every   

That is, the equivalence classes partition  ! 

Definition (Connected component.) For each  , 
 , the set of vertices reachable from  , defines the 
connected component of   containing  .

⋍ S
Sx = {y |y ⋍ x} [x]

x ∈ S, x ∈ Sx
x, y ∈ S, Sx = Sy or Sx ∩ Sy = ∅

S

v ∈ V
[v] v

G v



Connectivity in Directed Graphs

• In directed graphs, reachability is reflexive and 
transitive, but not guaranteed to be symmetric 

• Can we define a related equivalence relation on the 
vertices of a directed graph? 

• Two vertices   in a directed graph   are 
mutually reachable if there is a directed path from   
to   and from from   to   

• Mutually reachable is an equivalence relation 
• Why?

u, v G
u

v v u
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Strongly Connected
• A graph   is strongly connected if every pair of 

vertices are mutually reachable 
• The mutual reachability relation decomposes the 

graph into strongly-connected components 

• Definition (Strongly-connected component.) For 
each  ,  , the set of vertices mutually 
reachable from  , defines the strongly-connected 
component of   containing  .

G

v ∈ V [v]
v

G v



Deciding Strongly Connected
First idea. How can we use BFS to determine strong 
connectivity? Recall: BFS on graph   starting at   will 
identifies all vertices reachable from   by directed paths 

• Pick a vertex  . Check to see whether every other 
vertex is reachable from  ;  

• Now see whether   is reachable from every other vertex 
Analysis

• First step: one call to BFS:   time 

• Second step:   calls to BFS:   time 
• Can we do better?

G v
v

v
v

v

O(n + m)
n − 1 O(n(n + m))
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Deciding Strongly Connected
Improved Idea. Flip the edges of G and do a BFS on the new graph 

• Build   where     

• There is a directed path from v to u in  iff there is a 
directed path from u to v in   

Second step: Call  : Every vertex is reachable from   
(in  ) if and only if   is reachable from every vertex (in  ). 

Analysis
•  :   time 

• Build  :   time. [Do you believe this?] 

•  :    time

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E
Grev

G
𝖡𝖥𝖲(Grev, v) v

Grev v G

𝖡𝖥𝖲(G, v) O(n + m)
Grev O(n + m)

𝖡𝖥𝖲(Grev, v) O(n + m)
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