Depth-first Search and Directed Graphs

Story So Far

- Breadth-first search
- Using breadth-first search for connectivity
- Using bread-first search for testing bipartiteness

```
Put s in the queue Q
While Q is not empty
Extract v from Q
If v is unmarked
Mark v
For each edge (v, w):
Put w into the queue Q
```

The BFS Tree

• Can remember parent nodes (the node at level i that lead us to a given node at level i+1)

```
BFS-Tree(G, s):
Put (∅, s) in the queue Q
While Q is not empty
Extract (p, v) from Q
If v is unmarked
Mark v
parent(v) = p
For each edge (v, w):
Put (v, w) into the queue Q
```

Spanning Trees

- **Definition.** A spanning tree of an undirected graph G is a connected acyclic subgraph of G that contains every node of G.
- The tree produced by the BFS algorithm (with ((u, parent(u))) as edges) is a spanning tree of the component containing s.

Spanning Trees

- **Definition.** A spanning tree of an undirected graph G is a connected acyclic subgraph of G that contains every node of G.
- The tree produced by the BFS algorithm (with (u, parent(u)) as edges) is a spanning tree of the component containing s.
- The BFS spanning tree gives the shortest path from s to every other vertex in its component (we will revisit shortest path in a couple of lectures)
- BFS trees in general are short and bushy

Generalizing BFS: Whatever-First

If we change how we store the explored vertices (the data structure we use), it changes how we traverse

```
Whatever-First-Search (G, s):
Put s in the bag
While bag is not empty
Extract v from bag
If v is unmarked
Mark v
For each edge (v, w):
Put w into the bag
```

Depth-first search: when bag is a stack, not queue

Depth-first Search Example

Depth-First Search: Recursive

- Perhaps the most natural traversal algorithm
- Can be written recursively as well
- Both versions are the same; can actually see the "recursion stack" in the iterative version

RECURSIVEDFS(v): if v is unmarked mark v for each edge vw RECURSIVEDFS(w)

```
ITERATIVEDFS(s):

Push(s)

while the stack is not empty

v \leftarrow Pop

if v is unmarked

mark v

for each edge vw

Push(w)
```

Depth-first Search: Stack

- Inserts and extracts to a stack take O(1) time
- Thus, overall running time is O(n + m)

```
ITERATIVEDFS(s):

Push(s)

while the stack is not empty

v \leftarrow Pop

if v is unmarked

mark v

for each edge vw

Push(w)
```

DFS returns a spanning tree, similar to BFS

```
DFS-Tree(G, s):
  Put (∅, s) in the stack S
  While S is not empty
    Extract (p, v) from S
    If v is unmarked
       Mark v
       parent(v) = p
       For each edge (v, w):
        Put (v, w) into the stack S
```

The spanning tree formed by parent edges in a DFS are usually long and skinny

Lemma. For every edge e = (u, v) in G, one of u or v is an ancestor of the other in T.

```
RecursiveDFS(p, v):
    If v is unmarked
    Mark v
    parent(v) = p # (p, v) is a tree edge
    For each edge (v, w):
        RecursiveDFS(v, w)
```

Easier to think in terms of recursive definition

Lemma. For every edge e = (u, v) in G, one of u or v is an ancestor of the other in T.

Proof. Obvious if edge e is in T. Suppose edge e is not in T. Without loss of generality, suppose DFS is called on u before v.

Lemma. For every edge e = (u, v) in G, one of u or v is an ancestor of the other in T.

Proof. Obvious if edge e is in T. Suppose edge e is not in T. Without loss of generality, suppose DFS is called on u before v.

- When the edge u, v is inspected v must have been already marked visited; Or else $(u, v) \in T$
- v is not marked visited during the DFS call on u
- Must have been marked during a recursive call within DFS(u), thus v is a descendant of u

Directed Graphs

Notation. G = (V, E).

- Edges have "orientation"
- Edge (u, v) leaves node u and enters node v
- Nodes have "in-degree" and "out-degree"
- No loops or multi-edges (why?)

Terminology of graphs extend to directed graphs: directed paths, cycles, etc.

Directed Graphs in Practice

Web graph:

- Webpages are nodes, hyperlinks are edges
- Orientation of edges is crucial

Search engines use hyperlink structure to rank

web pages

Road network

- Road: nodes
- Edge: one-way street

Directed Graph Search

Directed reachability. Given a node *s* find all nodes reachable from *s*.

- Can use both BFS and DFS
- Both visit exactly the set of nodes reachable from starting node s

Review: Equivalence Relation

Definition. A binary relation \simeq on a set S is an equivalence relation on S if \simeq has the following properties

- Reflexive: $\forall x \in S, x \leq x$
- Symmetric: $\forall x, y \in S, x = y \implies y = x$
- Transitive: $\forall x, y, z \in S, x = y \text{ and } y = x \implies x = z$

Question. Identify the properties in these relations:

(a) Lives-in-the-same-city-as, (b) Is-an-ancestor of

Reachability & Equivalence Relation

In undirected graphs, reachability is an equivalence relation between pairs of vertices

- Each node is reachable from itself (reflexive)
- If v is reachable from u, then u is reachable from v (symmetric)
- If v is reachable from u, and u is reachable from w, then then v is reachable from w (transitive)

Connectivity & Equivalence Classes

An equivalence relation \cong on a set S gives rise to equivalence classes $S_x = \{y \mid y \cong x\}$, also written as [x]

These equivalence classes have the following properties

- For every $x \in S$, $x \in S_x$
- For every $x,y\in S,\ S_x=S_y$ or $S_x\cap S_y=\varnothing$

That is, the equivalence classes partition S!

Definition (Connected component.) For each $v \in V$, [v], the set of vertices reachable from v, defines the connected component of G containing v.

Connectivity in Directed Graphs

- In directed graphs, reachability is reflexive and transitive, but not guaranteed to be symmetric
- Can we define a related equivalence relation on the vertices of a directed graph?

Connectivity in Directed Graphs

- In directed graphs, reachability is reflexive and transitive, but not guaranteed to be symmetric
- Can we define a related equivalence relation on the vertices of a directed graph?
- Two vertices u, v in a directed graph G are mutually reachable if there is a directed path from u to v and from from v to u
- Mutually reachable is an equivalence relation
 - Why?

Strongly Connected

- A graph G is strongly connected if every pair of vertices are mutually reachable
- The mutual reachability relation decomposes the graph into strongly-connected components

• **Definition (Strongly-connected component.)** For each $v \in V$, [v], the set of vertices mutually reachable from v, defines the strongly-connected component of G containing v.

First idea. How can we use BFS to determine strong connectivity? Recall: BFS on graph G starting at v will identifies all vertices reachable from v by directed paths

First idea. How can we use BFS to determine strong connectivity? Recall: BFS on graph G starting at v will identifies all vertices reachable from v by directed paths

- Pick a vertex v. Check to see whether every other vertex is reachable from v;
- Now see whether v is reachable from every other vertex

First idea. How can we use BFS to determine strong connectivity? Recall: BFS on graph G starting at v will identifies all vertices reachable from v by directed paths

- Pick a vertex v. Check to see whether every other vertex is reachable from v;
- Now see whether v is reachable from every other vertex

Analysis

- First step: one call to BFS: O(n + m) time
- Second step: n-1 calls to BFS: O(n(n+m)) time
- Can we do better?

Improved Idea. Flip the edges of G and do a BFS on the new graph

- Build $G_{\text{rev}} = (V, E_{\text{rev}})$ where $(u, v) \in E_{\text{rev}}$ iff $(v, u) \in E$
- There is a directed path from v to u in $G_{\rm rev}$ iff there is a directed path from u to v in G

Second step: Call $BFS(G_{rev}, v)$: Every vertex is reachable from v (in G_{rev}) if and only if v is reachable from every vertex (in G).

Improved Idea. Flip the edges of G and do a BFS on the new graph

- Build $G_{\text{rev}} = (V, E_{\text{rev}})$ where $(u, v) \in E_{\text{rev}}$ iff $(v, u) \in E$
- There is a directed path from v to u in $G_{\rm rev}$ iff there is a directed path from u to v in G

Second step: Call $BFS(G_{rev}, v)$: Every vertex is reachable from v (in G_{rev}) if and only if v is reachable from every vertex (in G).

Analysis

- BFS(G, v): O(n + m) time
- Build G_{rev} : O(n+m) time. [Do you believe this?]
- BFS(G_{rev}, v): O(n + m) time