
Depth-first Search and
Directed Graphs

Story So Far
• Breadth-first search
• Using breadth-first search for connectivity
• Using bread-first search for testing bipartiteness

BFS (G, s):
Put s in the queue Q
While Q is not empty

Extract v from Q
If v is unmarked

Mark v
For each edge (v, w):

 Put w into the queue Q

The BFS Tree
• Can remember parent nodes (the node at level

that lead us to a given node at level)

BFS-Tree(G, s):
Put (∅, s) in the queue Q
While Q is not empty

Extract (p, v) from Q
If v is unmarked

Mark v
parent(v) = p
For each edge (v, w):

 Put (v, w) into the queue Q

i
i + 1

Spanning Trees
• Definition. A spanning tree of an undirected graph

 is a connected acyclic subgraph of that
contains every node of .

• The tree produced by the BFS algorithm (with
(as edges) is a spanning tree of the
component containing .

• The BFS spanning tree gives the shortest path from
 to every other vertex in its component (we will
revisit shortest path in a couple of lectures)

• BFS trees in general are short and bushy

G G
G

(u, parent(u))
s

s

Spanning Trees
• Definition. A spanning tree of an undirected graph

 is a connected acyclic subgraph of that
contains every node of .

• The tree produced by the BFS algorithm (with
(as edges) is a spanning tree of the
component containing .

• The BFS spanning tree gives the shortest path from
 to every other vertex in its component (we will
revisit shortest path in a couple of lectures)

• BFS trees in general are short and bushy

G G
G

(u, parent(u))
s

s

Generalizing BFS: Whatever-First

If we change how we store the explored vertices (the
data structure we use), it changes how we traverse

Whatever-First-Search (G, s):
Put s in the bag
While bag is not empty

Extract v from bag
If v is unmarked

Mark v
For each edge (v, w):

 Put w into the bag

Depth-first search: when bag is a stack, not queue

Depth-first Search Example

1

2 3

5

6
7

4

Depth-First Search: Recursive
• Perhaps the most natural traversal algorithm
• Can be written recursively as well
• Both versions are the same; can actually see the

“recursion stack” in the iterative version

Depth-first Search: Stack
• Inserts and extracts to a stack take time
• Thus, overall running time is

O(1)
O(n + m)

• DFS returns a spanning tree, similar to BFS

• The spanning tree formed by parent edges in a DFS
are usually long and skinny

DFS-Tree(G, s):
Put (∅, s) in the stack S
While S is not empty

Extract (p, v) from S
If v is unmarked

Mark v
parent(v) = p
For each edge (v, w):

 Put (v, w) into the stack S

Depth-First Search Tree

Depth-First Search Tree
Lemma. For every edge in , one of or
 is an ancestor of the other in .

RecursiveDFS(p, v):
 If v is unmarked
 Mark v
 parent(v) = p # (p, v) is a tree edge

For each edge (v, w):
 RecursiveDFS(v, w)

e = (u, v) G u
v T

Easier to think in terms of recursive definition

Depth-First Search Tree
Lemma. For every edge in , one of or
 is an ancestor of the other in .
Proof. Obvious if edge is in . Suppose edge is
not in . Without loss of generality, suppose DFS is
called on before .
• When the edge is inspected must have been

already marked visited; Or else
• is not marked visited during the DFS call on
• Must have been marked during a recursive call in

DFS(), thus is a descendant of

e = (u, v) G u
v T

e T e
T

u v
u, v v

(u, v) ∈ T
v u

u v u

Depth-First Search Tree
Lemma. For every edge in , one of or
 is an ancestor of the other in .
Proof. Obvious if edge is in . Suppose edge is
not in . Without loss of generality, suppose DFS is
called on before .
• When the edge is inspected must have been

already marked visited; Or else
• is not marked visited during the DFS call on
• Must have been marked during a recursive call

within DFS(), thus is a descendant of

e = (u, v) G u
v T

e T e
T

u v
u, v v

(u, v) ∈ T
v u

u v u

Directed Graphs
Notation. .

• Edges have “orientation”
• Edge leaves node and enters node
• Nodes have “in-degree” and “out-degree”
• No loops or multi-edges (why?)

Terminology of graphs extend  
to directed graphs: directed  
paths, cycles, etc.

G = (V, E)

(u, v) u v

Directed Graphs in Practice
Web graph:

• Webpages are nodes, hyperlinks are edges
• Orientation of edges is crucial
• Search engines use hyperlink structure to rank

web pages  

Road network
• Road: nodes
• Edge: one-way street

Directed Graph Search
Directed reachability. Given a node find all nodes
reachable from .

• Can use both BFS and DFS
• Both visit exactly the set of nodes reachable from

starting node

s
s

s

Review: Equivalence Relation
Definition. A binary relation on a set is an
equivalence relation on if has the following
properties

• Reflexive:
• Symmetric:
• Transitive:

  

Question. Identify the properties in these relations:
 (a) Lives-in-the-same-city-as, (b) Is-an-ancestor of

⋍ S
S ⋍

∀x ∈ S, x ⋍ x
∀x, y ∈ S, x ⋍ y ⟹ y ⋍ x

∀x, y, z ∈ S, x ⋍ y and y ⋍ x ⟹ x ⋍ z

Reachability & Equivalence Relation

In undirected graphs, reachability is an equivalence
relation between pairs of vertices  

• Each node is reachable from itself (reflexive)
• If is reachable from , then is reachable from

 (symmetric)
• If is reachable from , and is reachable from

 , then then is reachable from (transitive)

v u u
v

v u u
w v w

Connectivity & Equivalence Classes

An equivalence relation on a set gives rise to
equivalence classes , also written as

These equivalence classes have the following properties
• For every
• For every

That is, the equivalence classes partition !

Definition (Connected component.) For each ,
 , the set of vertices reachable from , defines the
connected component of containing .

⋍ S
Sx = {y |y ⋍ x} [x]

x ∈ S, x ∈ Sx
x, y ∈ S, Sx = Sy or Sx ∩ Sy = ∅

S

v ∈ V
[v] v

G v

Connectivity in Directed Graphs

• In directed graphs, reachability is reflexive and
transitive, but not guaranteed to be symmetric

• Can we define a related equivalence relation on the
vertices of a directed graph?

• Two vertices in a directed graph are
mutually reachable if there is a directed path from
to and from from to

• Mutually reachable is an equivalence relation
• Why?

u, v G
u

v v u

Connectivity in Directed Graphs

• In directed graphs, reachability is reflexive and
transitive, but not guaranteed to be symmetric

• Can we define a related equivalence relation on the
vertices of a directed graph?

• Two vertices in a directed graph are
mutually reachable if there is a directed path from
to and from from to

• Mutually reachable is an equivalence relation
• Why?

u, v G
u

v v u

Strongly Connected
• A graph is strongly connected if every pair of

vertices are mutually reachable
• The mutual reachability relation decomposes the

graph into strongly-connected components

• Definition (Strongly-connected component.) For
each , , the set of vertices mutually
reachable from , defines the strongly-connected
component of containing .

G

v ∈ V [v]
v

G v

Deciding Strongly Connected
First idea. How can we use BFS to determine strong
connectivity? Recall: BFS on graph starting at will
identifies all vertices reachable from by directed paths

• Pick a vertex . Check to see whether every other
vertex is reachable from ;

• Now see whether is reachable from every other vertex
Analysis

• First step: one call to BFS: time

• Second step: calls to BFS: time
• Can we do better?

G v
v

v
v

v

O(n + m)
n − 1 O(n(n + m))

Deciding Strongly Connected
First idea. How can we use BFS to determine strong
connectivity? Recall: BFS on graph starting at will
identifies all vertices reachable from by directed paths

• Pick a vertex . Check to see whether every other
vertex is reachable from ;

• Now see whether is reachable from every other vertex
Analysis

• First step: one call to BFS: time

• Second step: calls to BFS: time
• Can we do better?

G v
v

v
v

v

O(n + m)
n − 1 O(n(n + m))

Deciding Strongly Connected
First idea. How can we use BFS to determine strong
connectivity? Recall: BFS on graph starting at will
identifies all vertices reachable from by directed paths

• Pick a vertex . Check to see whether every other
vertex is reachable from ;

• Now see whether is reachable from every other vertex
Analysis

• First step: one call to BFS: time

• Second step: calls to BFS: time
• Can we do better?

G v
v

v
v

v

O(n + m)
n − 1 O(n(n + m))

Deciding Strongly Connected
Improved Idea. Flip the edges of G and do a BFS on the new graph

• Build where

• There is a directed path from v to u in iff there is a
directed path from u to v in

Second step: Call : Every vertex is reachable from
(in) if and only if is reachable from every vertex (in).

Analysis
• : time

• Build : time. [Do you believe this?]

• : time

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E
Grev

G
𝖡𝖥𝖲(Grev, v) v

Grev v G

𝖡𝖥𝖲(G, v) O(n + m)
Grev O(n + m)

𝖡𝖥𝖲(Grev, v) O(n + m)

Deciding Strongly Connected
Improved Idea. Flip the edges of G and do a BFS on the new graph

• Build where

• There is a directed path from v to u in iff there is a
directed path from u to v in

Second step: Call : Every vertex is reachable from
(in) if and only if is reachable from every vertex (in).

Analysis
• : time

• Build : time. [Do you believe this?]

• : time

Grev = (V, Erev) (u, v) ∈ Erev iff (v, u) ∈ E
Grev

G
𝖡𝖥𝖲(Grev, v) v

Grev v G

𝖡𝖥𝖲(G, v) O(n + m)
Grev O(n + m)

𝖡𝖥𝖲(Grev, v) O(n + m)

