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• Also called the frequent items problem


• Stream of  elements arrive over time


• A heavy hitter is an element that occurs at least  times 


• Usually reported at the end of the stream


• Hard in small space: exact solution requires Ω(N) words

N
ϕN

The Heavy Hitter Problem

[Cormode 05]



Report 

s1 s2 st

• Stream of elements arrive over time

• An event occurs at time    if     occurs exactly  times in 

• In the online event detection problem (OEDP), we want to 
report all events as soon as they occur.

T = ϕNt

Timely Heavy Hitters:   
Online Event Detection Problem (OEDP)

Time
t

st
(s1, s2, …, st)

Suppose T = 4

Event!



• Stream is large & high-speed (millions/sec) 
 
 
 
 
 
 
 

OEDP Requirements 

HIGH THROUGHPUT (fast inserts)
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NO ERRORS (esp. false negatives)

Immediate reporting (ONLINE)

HIGH THROUGHPUT (fast inserts)

Every insert is 
also a query!



• Stream is large & high-speed (millions/sec) 
 
 

• Events are high-consequence real-life events  
 
 
 
 

• Very small reporting threshold T << N (stream size)

OEDP Requirements

HIGH THROUGHPUT (fast inserts)

Be scalable to SMALL THRESHOLDS

NO ERRORS (esp. false negatives)

Immediate reporting (ONLINE)

Every insert is 
also a query!



• Department of Defense (DoD) and Sandia designed the 
Firehose benchmark for this setting [https://firehose.sandia.gov/]


• The high-speed input stream consists of (key, value) pairs 

• On the 24th occurrence of key appears, some function of its 

values must be reported immediately

• Most difficult part of this is determining when the 24th 

instance of a key arrives

Firehose Streaming Benchmark

Event

T = 24 = o(1) 
Stream size ~ 1 TB

https://firehose.sandia.gov/


• Exact one pass solution requires          space

• Approximate solutions trade off accuracy for space [Alon et al. 96, 

Berinde et al. 10,  Bhattacharyya et al. 16, Bose et al. 03, Braverman et al. 16,  Charikar et al. 
02, 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02., Misra and 
Gries. 82, etc.]

One-Pass Streaming Has Errors

Stream

Ω(N)

RAM
Maintain count estimates in 

RAM [Misra & Greis 82] 
Online but incurs errors!

M

N



Two-Pass Streaming Isn’t Real Time

Stream

RAM
Maintain count estimates in 

RAM [MG82] 
No errors but offline!

Second pass

• A second pass over the stream can get rid of errors

M

N



• A second pass over the stream can get rid of errors

• To do a second pass, you need to store your data somewhere

Stream

RAM
Maintain count estimates in 

RAM [MG82] 

Second pass

No errors but offline!

External Storage

M

N

Exact Solutions Need Large Space



• A second pass over the stream can get rid of errors

• To do a second pass, you need to store your data somewhere

• Why wait for second pass?

If Data is Stored: Why Not Access It?

Stream

RAM
Maintain count estimates in 

RAM [MG82] 

Second pass

No errors but offline!

External Storage

M

N



Modern External Memory: SSDs

RAM

External Storage (SSD)

M

Sequential access on 
modern SSDs ~ Random 

access in RAM!

Random accesses are 
slow, but fine if not 

bottleneck 



• Data is transferred between RAM and EM in blocks of size B 
• Performances measured in # of I/Os

The External-Memory Model

RAM

External Storage

M
B



• Question: How many I/Os to scan an array of length N?

• Answer: O(N/B) I/Os.

External-Memory Model: Review



• Question: How many I/Os for a point query or insert into a 
B-tree with N elements?

• Answer: O(logB N)

External-Memory Model: Review



• Logging: inserts are fast, but queries are slow


• B-trees: point queries are fast but inserts are slow  

Optimal Trade-Off Curve [Brodal, Fagerberg 03]



• You can improve insert costs without losing out on queries

Idea Behind Write-Optimization



Does Write-Optimization Solve OEDP?

• Write optimized data structures like COLA, cascade filters, etc. 
(WODs) let you do fast inserts and B-tree like queries

Insert Query

O( log N/M
B ) Ω(log2 N)

But every insert is 
also a query in OEDP!

Example: WODS dictionaries like cascade filters/ COLA do 
not solve the problem!  But we can use insights from WODs



• Combine streaming and WODs techniques to solve OEDP: 
design cache-efficient variant of the classic HH algorithm

What We Do

• If slight delay in reporting is allowed, we present a new data 
structure that matches the optimal insertion cost 

Optimal Insert Optimal Query

O ( log N/M
B ) Ω(logB N)

• Can achieve immediate reporting with no errors at a cost that  
slightly worse than best insertion cost

Avoid most 
point queries 



• Given a stream of size N and                         , the amortized cost of 

solving OEDP is 

 

  If               or              , this reduces to             

Our Results
ϕN > Ω(N/M)

O (( 1
B

+
1

(ϕ − 1/M)N ) log
N
M )

ϕN > B N > MB O ( log N/M
B )



• Given a stream of size N and                         , the amortized cost of 

solving OEDP is 

 

 

• Allowing a constant time stretch in reporting, we can support 

arbitrarily small thresholds      with amortized cost

If               or              , this reduces to             

Our Results
ϕN > Ω(N/M)

O (( 1
B

+
1

(ϕ − 1/M)N ) log
N
M )

ϕN > B N > MB O ( log N/M
B )

ϕ O ( log N/M
B )



• All items with count at least  must be reported


• No item with count  should be reported


• Items count in between may or may not be reported (if 
reported these items are false positives)

ϕN

< (ϕ − ϵ)N

Approximate Heavy Hitters Problem  

ϕN N(ϕ − ε)N1

Do not report Must reportAllowed errors

For exact, set ε = 1/N



• Generalization of Moore 81 majority finding algorithm


• First proposed in 1982 by Misra and Gries, rediscovered 
twice in 2002, many improvements followed


• Finds k items that appear at least N/k times 


• For AHH, set 

Misra Gries (MG) Algorithm 

k = 1/ε



• Maintain       counters in memory


• When an item arrives


• if there is a counter for it, increment the counter


• if there is no counter for it


• and there is space, add a counter and set to 1


• otherwise, decrement all counters 

Misra Gries (MG) Algorithm 

1/ε

[Cormode 05]



Misra Gries (MG) Algorithm 

4

Counters

1 ⌈1/ε⌉
3 2 1 1 2 3

Items identified by 
color; # is the count



4

1 ⌈1/ε⌉
3 2 1 2 2 3

Misra Gries (MG) Algorithm 



4

1 ⌈1/ε⌉
3 2 1 2 2 13

Misra Gries (MG) Algorithm 



4

1 ⌈1/ε⌉
3 3 1 2 2 13

Misra Gries (MG) Algorithm 



4

No counter for this item; 
No space to insert  

1 ⌈1/ε⌉
3 3 1 2 2 13 1

Misra Gries (MG) Algorithm 



3

Decrement all counters

1 ⌈1/ε⌉
2 2 0 1 1 02 0

Misra Gries (MG) Algorithm 



3

Remove if zero

1 ⌈1/ε⌉
2 2 1 1 2

Misra Gries (MG) Algorithm 



• Let     be the count estimate for item with frequency    
given by MG algorithm 


• Then

MG Algorithm Analysis

f̃ ≤ f ≤ f̃ + Nε

f̃
f

An item’s counter is 
incremented only when an 

instance of it is seen



• Let     be the count estimate for item with frequency    
given by MG algorithm 


• Then

MG Algorithm Analysis

f̃ ≤ f ≤ f̃ + Nε

How many times can we lose a count of 
an item?  Every time we lose an item 
count, we decrement all counters by one.  
Can happen only                    times!N/(1/ε)

f̃
f



• Run the MG algorithm and report all items with count 
estimate

MG for Approximate Heavy Hitters

> (ϕ − ε)N

f ≥ ϕN

• Satisfies AHH guarantees


• If                    , since          , item not reported


• If             , then item is always reported because  
                  

f ≤ (ϕ − ε)N f̃ ≤ f

f̃ ≥ f − Nε ≥ (ϕ − ε)N



External-Memory Misra Gries

• A sequence of geometrically increasing Misra-Gries tables


• The smallest table is in memory and is of size M, the last 
table is of size          


• Total levels = O(log(1/εM))

⌈1/ε⌉

Structure

• The top level receives its input from the stream


• Decrements from one level are inputs to the level below


• Decrements from the last level leave the structure

Algorithm



External-Memory Misra Gries

M

Mr

Mr2

RAM

Disk

MrL = ⌈1/ε⌉

1 12 1 1



M

Mr

Mr2

RAM

Disk

MrL = ⌈1/ε⌉

1

1

1 1 11 1

External-Memory Misra Gries



M

Mr

Mr2

RAM

Disk

MrL = ⌈1/ε⌉

1

1

1 1 11 1

1

External-Memory Misra Gries



M

Mr

Mr2

RAM

Disk

MrL = ⌈1/ε⌉

1

1

1 1 11 1

1 1

External-Memory Misra Gries



M

Mr

Mr2

RAM

Disk

MrL = ⌈1/ε⌉

1

1

1 1 11 1

1 1 1

External-Memory Misra Gries



M

Mr

Mr2

RAM

Disk

MrL = ⌈1/ε⌉

1

1

1 1 11 1

1 1 1 1

External-Memory Misra Gries



M

Mr

Mr2

RAM

Disk

MrL−1 = ⌈1/ε⌉

1 1 2 22 2 1 1

Items flushed from the 
last level are deleted

Moving element counts from 
one level to another is a flush

External-Memory Misra Gries



# of levels

EM Misra Gries Analysis

Theorem. Amortized cost of insert in EM Misra Gries is O ( 1
B

log
1

εM )
• A flush from level    and inserting into level          costs                   I/Os


• Each such flush moves          down one level 

• Amortized cost of a flush 

• Each element can move down at most                   levels  

i i + 1 O ( ri+1M
B )

riM

=
ri+1M
riM

⋅
1
B

= O ( r
B )

log 1/(εM)



External-Memory MG Algorithm: 
Takeaways

• Supports fast inserts for small    .  
For the common case,  when                     , the cost of 
inserting into an external-memory MG algorithm even for 
small     is << 1 I/O.


• Does not support timely reporting.  
Counts of items may be buried on lower levels on disk, 
that is, online event detection is no longer possible

ε
B = Ω(log N)

ε



Towards Online Event Detection

How do we get timely reporting? 

• OEDP.  We can pay for more I/Os to do queries


• When to query?  Querying on every insert is too 
expensive


• OEDP with time stretch. No explicit queries necessary 
if bounded delay is allowed


• The algorithm can “organically” find the events



OEDP Algorithm
• Modify external-memory MG algorithm to support timely 

reporting


• When the in-memory count estimate of an item reaches 
the reporting threshold of RAM MG table                   , 
query all levels for rest of the counts


• If consolidated count reaches overall threshold 
then report   

(ϕ − 1/M)N

(ϕ − ε)N



M

Mr

Mr2

RAM

Disk

MrL = ⌈1/ε⌉

1

1 2 42 1 3 4

1

6 3 4 511 2 9 1 3

1

2 9 1 4 3

2 1 2 2

OEDP Algorithm
Suppose


Reporting threshold in RAM: (ϕ − 1/M)N = 9
N/M = 31, ϕN = 40, εN = 3

2

4
Report if total count 
reaches ϕN − ϵN = 27



I/O cost of regular 
external-memory MG

OEDP Algorithm Analysis

ϕ > 1/M + Ω(1/N )Theorem. Given a stream of size N, and                               , the 

amortized cost of solving OEDP is  O (( 1
B

+
1

(ϕ − 1/M)N ) log
1

ϵM )



OEDP Algorithm Analysis

ϕ > 1/M + Ω(1/N )Theorem. Given a stream of size N, and                               , the 

amortized cost of solving OEDP is  O (( 1
B

+
1

(ϕ − 1/M)N ) log
1

ϵM )

Fraction of elements 
that have count 
≥ (ϕ − 1/M)N



OEDP Algorithm Analysis

ϕ > 1/M + Ω(1/N )Theorem. Given a stream of size N, and                               , the 

amortized cost of solving OEDP is  O (( 1
B

+
1

(ϕ − 1/M)N ) log
1

ϵM )

Fraction of elements 
that have count 
≥ (ϕ − 1/M)N

Number of levels 
touched to 

consolidate count

This can be very expensive if       is close to          ! ϕ 1/M



For a time-stretch of          , we must report an element a no later 
than time                      

Bounded Reporting Delay

Flow time Ft

1st occurrence 
of item at time 

t1

th occurrence 
of item at time  

               t2

ϕN Latest time by when 
item must be reported

    t3

(1 + α)Ft

OEDP with Time Stretch

t1 + (1 + α)Ft

Key idea: the longer the flow time of a key, 
the more leeway we have in reporting it

1 + α



Time-Stretch Filter

• Cascade of geometrically increasing tables      


• Total levels = O(log N/M)

M

Mr

Mr2

RAM

EM

MrL = N



M

Mr

Mri

RAM

EM

Mri+1

1/α bins Divide each level into                 equal-sized bins(1 + 1/α)

Time-Stretch Filter



M

Mr

Mri

RAM

EM

Mri+1

1/α bins When a bin is full, items move to adjacent bin

Time-Stretch Filter



M

Mr

Mri

RAM

EM
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1/α bins When a bin is full, items move to adjacent bin

Time-Stretch Filter



M

Mr

Mri

RAM

EM

Mri+1

1/α bins When a bin is full, items move to adjacent bin

Time-Stretch Filter



M

Mr

Mri

RAM

EM

Mri+1

1/α bins When a bin is full, items move to adjacent bin

Time-Stretch Filter



M

Mr

Mri

RAM

EM

Mri+1

1/α bins Last bin flushed to first bin of next level

Time-Stretch Filter



M

Mr

Mri

RAM

EM

Mri+1

1/α bins

While flushing consolidate all 
counts; report if hits threshold

Last bin flushed to first bin of next level

Time-Stretch Filter



M

Mr

Mri

RAM

EM

Mri+1

1/α bins Last bin flushed to first bin of next level

Time-Stretch Filter



M

Mr

Mri

RAM

EM

Mri+1

1/α bins

While flushing consolidate all 
counts; report if hits threshold

Main idea: key is not put on a deeper level until it has “aged sufficiently”

Time-Stretch Filter



M

Mr

Mri

RAM

EM

Mri+1

1/α bins

1
α bins of size 

α
α + 1

⋅ riM

Let          be the lowest level a key is at 
when it  hits the threshold count


 

i + 1

Time-Stretch Filter Correctness



M

Mr

Mri

RAM

EM

Mri+1

1/α bins

1
α bins of size 

α
α + 1

⋅ riM

Let          be the lowest level a key is at 
when it  hits the threshold count


Must have waited         bins at each level up to 
since its first arrival, dominated by wait at 


i + 1

1/α i
i

Time-Stretch Filter Correctness



M

Mr

Mri

RAM

EM

Mri+1

1/α bins

1
α bins of size 

α
α + 1

⋅ riM

Let          be the lowest level a key is at 
when it  hits the threshold count


Must have waited         bins at each level up to 
since its first arrival, dominated by wait at 


That is,


i + 1

1/α i
i

Ft ≥
riM

α + 1

Time-Stretch Filter Correctness



M

Mr

Mri

RAM

EM

Mri+1

1/α bins

1
α bins of size 

α
α + 1

⋅ riM

Let          be the lowest level a key is at 
when it  hits the threshold count


Must have waited         bins at each level up to 
since its first arrival, dominated by wait at 


That is,


Level           will participate in a flush again in  
 
                        time steps—key will be reported

i + 1

1/α i

Ft ≥
riM

α + 1

i

i + 1
αriM
α + 1

≤ αFt

Time-Stretch Filter Correctness



Optimal insert cost for EM & 
write-optimized dictionaries 

Theorem. Given a stream of size N, the amortized cost of solving 

OEDP with a time stretch             is  O (( 1 + α
α ) 1

B
log

N
M )1 + α

Time-Stretch Filter Analysis



Factor lost because we only 
flush a fraction of each level; 
Constant loss for constant α

Theorem. Given a stream of size N, the amortized cost of solving 

OEDP with a time stretch             is  1 + α

Almost-online reporting with no extra query cost!

Time-Stretch Filter Analysis

O (( 1 + α
α ) 1

B
log

N
M )



Implementation/ Optimizations

• Counts stored succinctly using counting quotient filters (CQFs) 
[Pandey et al. 17]


• Deamortize by dividing filter at each level into multiple smaller 
filters called cones

2

0

1

RAM

FLASH

Cones



• Multi-threaded implementation


• Each thread operates by first taking a lock at the cone and then 
performing the insert operation

2

0

1

RAM

FLASH

Threads

Cones

Implementation/ Optimizations



• Multi-threaded implementation


• Each thread operates by first taking a lock at the cone and then 
performing the insert operation


• If there is contention, the thread then inserts the item in its local 
buffer and continues

Local CQF

2

0

1

RAM

FLASH

Local CQF Local CQF Local CQF
Threads

Cones

Implementation/ Optimizations



Evaluations: Time Stretch

• Time-stretch filter gives improvements in timely reporting 
compared to out-of-the-box structures like cascade filters 
[Bender et al.12]



Evaluations: Insertion Throughput

• The EM MG filter without immediate reporting has the highest 
throughput, followed by other variants 



Evaluations: Scalability

• With higher # of threads and higher N/M, the counter-stretch filter 
beats throughput of regular MG algorithm



Evaluations: I/O Performance

• The total I/O measured using ‘iotop’ and calculated theoretically is 
similar for various versions of the OEDP data structures



Conclusions & Future Directions
• Bridging the gap between streaming & external memory

• With modern SSDs and I/O techniques possible to match 

cache-latency-bound in-memory data structures in EM


• What other streaming problems can be solved exactly in EM 
at comparable speed?


• What is the write model for streaming in modern EM?

Streaming 
Model

External-memory 
Model
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