Non-Cooperative Rational
Interactive Proofs

Jing Chen Samuel McCauley Shikha Singh
Stony Brook University Williams College Williams College

W

Modern Computing Challenges

 Computational devices are getting smaller

* The computation they need to perform is getting more complex

Computation: A Commodity

* Joday most large-scale computation is outsourced to service providers

* Buy their computational services for money

o,

Google Cloud Platform

amazon
webservices™

EC2

gl \icrosoft
Wl Azure

LY
1) BV Watson®

Qutsourcing Computation

Answer IH L\
m Are they being truthful?

Client 9 Service Provider

How much should | pay?

Solve this hard
problem for me

Researc

If someone else clams -

N Question

‘0 have solved your problem,

how do you know t

ney are telling the truth”

How do we verify correctness of outsourced
computation efficiently (without re-executing them)?

(Multi-Prover) Interactive Proofs

|[GMR, BM 85, BGWW 88]

* Formal framework to study verification of outsourced computation
* Verifier is probabilistic polynomial time, provers are unbounded

* Provers goal Is to prove that a string x is in language [,

@A

O
3 O
Is it really true?

(Multi-Prover) Interactive Proofs

|[GMR, BM 85, BGWW 88]

* \erifier interacts with each prover separately
* Asking them questions to check if they are being truthful

* Finally, if Veritier is convinced, he accepts. Otherwise, he rejects

Protocol =~ tttttttttmmmmmmmmmmsmsseees

Accept/Reject é

INnteractive Proof Guarantees

 Completeness: For any x € L , there exists a strategy of the provers
such that Verifier accepts with probability at least 2/3

* Soundness: Forany x & L, for any strategy of the provers, Verifier
accepts with probability at most 1/3

Protocol

Accept/Reject é

INnteractive Proof Guarantees

 Completeness: For any x € L , there exists a strateqy of the provers
such that Verifier accepts with probability at least | ¢

* Soundness: Forany x & L, for any strategy of the provers, Verifier
accepts with probability at most | g

Aslong as ¢ > s + 1/poly(n)
the completeness soundness probabillities

can be made very close to 1 and O

Protocol

Accept/Reject é

Rich History of IPs

* Widely-studied area with deep results in complexity theory
e |P =PSPACE [s90]
e MIP = NEXP [BFL91, BFLS91]

* Probabilistically checkable proofs for NP
[AS92, FGLSS91, AS92, ALMSS92]

 (Game-theoretic characterization of complexity classes
* Using retereed-games model [CS96, FL92, FA92, FK9, etc.]
* EXP characterized as two-player zero-sum game [FK97]

Formal Framework to Study
Computation Outsourcing

IP for muggles [GKR08]

Proofs of proximity [RYW13, GR15, KR15]
Survey of recent developments [W15]

Rational proofs and arguments
[AM128&13, GHRV14&16, CMS16, etc.]

Refereed-games based delegation
[AM12, AM13, GHRV14, GHRV16, etc.]

DOI:10.1145/2641562

From theoretical possibility
to near practicality.

Verifying
Computations

without

Reexecuting
Them

IN THIS SETUP, a single reliable PC can monitor the
operation of a herd of supercomputers working with
possibly extremely powerful but unreliable software
and untested hardware.

—Babai, Fortnow, Levin, Szegedy, 1991*

How can a single PC check a herd of supercomputers
with unreliable software and untested hardware?

This classic problem is particularly relevant today, as
much computation is now outsourced: it is performed by
machines that are rented, remote, or both. For example,
service providers (SPs) now offer storage, computation,
managed desktops, and more. As a result, relatively
weak devices (phones, tablets, laptops, and PCs) can
run computations (storage, image processing, data

74 COMMUNICATIONS OF THE ACM FEBRUARY 2015 VOL. 58 NO. 2

analysis, video encoding, and so on) on
banks of machines controlled by some-
one else.

This arrangement is known as cloud
computing, and its promise is enor-
mous. A lone graduate student with an
intensive analysis of genome data can
now rent a hundred computers for 12
hours for less than $200. And many
companies now run their core comput-
ing tasks (websites, application logic,
storage) on machines owned by SPs,
which automatically replicate applica-
tions to meet demand. Without cloud
computing, these examples would
require buying hundreds of physical
machines when demand spikes ... and
then selling them back the next day.

But with this promise comes risk.
SPs are complex and large-scale, mak-
ing it unlikely that execution is always
correct. Moreover, SPs do not neces-
sarily have strong incentives to ensure
correctness. Finally, SPs are black box-
es, so faults—which can include mis-
configurations, corruption of data in
storage or transit, hardware problems,
malicious operation, and more*—are
unlikely to be detectable. This raises
a central question, which goes beyond
cloud computing: How can we ever trust
results computed by a third-party, or the
integrity of data stored by such a party?

A common answer is to replicate
computations.’*'** However, replica-
tion assumes that failures are uncor-
related, which may not be a valid as-
sumption: the hardware and software

key insights

= Researchers have bullt systems that
allow a local computer to efficiently check
the correctness of a remote execution.

= This is a potentlally radical development;
there are many applications, such as
defending against an untrusted hardware
supply chain, providing confidence in
cloud computing, and enabling new kinds
of distributed systems.

u Key enablers are PCPs and related
constructs, which have long been of
intense theoretical Interest.

u Bringing this theory to near practicality
Is the focus of an exciting new
Iinterdisciplinary research area.

The Two Extremes Of
Existing MIP Models

[GMR, BM 85,
BGWW 88]

Refereed

Classic IPs
Games

[CS76, FK97,
FKSos5, etc.]

Rational
IPs

[AM12, CMS16]

cassicips (Cooperative & Adversarial

* Provers work together as a team to mislead the verifier
« Convince the verifier that x € L (no matter what the truth is)
« Joint utility = Prob|V accepts claim x € L]

Protocol =~ "t ttTootmmmmmmmmsmsmses %
& Q

Accept/Reject
Verifier

Refereed . Competitive & Opinionated

* Provers compete with each other in a zero-sum game
« P provesx € L, P, proves x & L (at least one honest prover)
e u; = Prob(V accepts x € L), u, = Prob(V accepts x & L)

Protocol @~ """t TtTtTmomomomomomems %
Accept/Reject
Verifier
Provers

Rational

s Cooperative & Rational

* Provers work together as a team to maximize total payment
« Prove whichever claimx € L or x &€ L maximizes payment

o Joint utility u = E(R) (expected reward given by verifier)

Protocol

Verifier |9 9 9

N Between the Extremes:
Generalized Incentives

[GMR, BM 85,
BGWW 88]

, Non- Refereed
Classic IPs :
Cooperative Games
RIPs
Neither Coop.el.“atlve [CS76, FKo,
or Competitive FKSo5, etc.]
Ratlonal [This Work]
IPs

[AM12, CMS16]

Verification of OQutsourced

Computation:
A Mechanism-Design Problem

How can we design payment-based protocols that
incentivize rational and non-cooperative provers to
give us correct answers?

Non-Cooperative Rational
Interactive Proofs (nCcRIP)

* Each prover gets paid separately

* Want to maximize their own expected payment, given others’ strategies

Protocol

Non-Cooperative Provers

Mechanism Design
Considerations

* As all the provers are selfish and act on their own
* Need a meaningtul equilibrium concept

* \Where no prover can unilaterally deviate to improve payment

* Need to design the rules of the game (protocol and payment) s.t.

* Verifier learns the correct answer at such an equilibrium

Equilibrium Intuition

* We consider a simple protocol and reason using backward induction

* Reason backwards in time to decide how provers will act

* This captures the spirit of ncRIP, without the messy details

* This is not the actual equilibrium but it'll do for now

Example Protocol for NP

Consider the NP-complete of Graph Coloring (GC):
* |s a given graph 3-colorable?
Warm up: O(log n)-time rational proof for GC
Similar to PCPs, Veritier has “oracle access” to purported prooft

Simplitied model (brushing some details under the rug)

A 3-colorable graph

NCRIP tor NP

G is not ‘ -) Yes G is 3-colorable
S_Co|orabN {(V1, red), (V21 blue) (Vn, green)}

Bob: 1$ - s this coloring valid? A
E) -
Vos NO.’ eldge.(x,y)
IS Invalid
Bob: 2% L
Alice: 1%
It (x,y) is invalid Else
Bob =-1$ Bob = 2%

Alice = 2% Alice =-1$

NCRIP tor NP

[If Ais an invalid Coloring]

| should report Bob's lie and
get 29, or else | only get 13

- s this coloring valid? g A
Vos NO.’ eldge.(x,y)
IS Invalid
Bob: 2$)
Alice: 13 3
If (x.y) is invaIiAc/ \Iflse
Bob =-1$ Bob = 2%

Alice = 2$ Alice =-1$%

NCRIP tor NP
[f Ais a valid coloring]

| should agree with Bob and
get 1% or else | will get
caught and get -1%

- Is this coloring valid? A

3 >
Vos NO.’ eldge.(x,y)
| IS Invalid

)
Bob: 2% L
Alice: 1$ E |
If (x.y) is invaIiAc/ \Iflse
Bob =-1$ Bob = 2%

Alice = 2$ Alice =-1$%

NCRIP tor NP

[If G is not 3-colorable J

G is not ‘ : ‘ Yes GG is 3-colorable
3-colorable /\f t(v1, red), (ve, blue).... (vn, green);
Y

Bob: 13 ® s this coloring valid? ’ A
3 L
If | lie and send an invalid Yes NO.’ e.dge .(X’y)
coloring, Alice will report me s invalid
and | will get -1$. | should be Bob: 2% «Q
truthful and get 1$. Alice: 1$ 3
If (x.y) is invaIiAc/ \Iflse
Bob =-1$ Bob = 2%

Alice = 2% Alice =-1%

NCRIP tor NP
[If G is 3-colorable J

G is not ‘ - Yes G is 3-colorable
3_Co|orab|em {(V1, red), (V21 blue) (Vn, green)}

Bob: 1$ - s this coloring valid? A

; »
If I lie | only get 13, but if | am Yes NO; eldge .(X,Y)
truthful and provide the valid S invalid
coloring, Alice will agree with Bob: 2$ -
me and | get 2% Alice: 1$ 3
If (x.y) is invaIiAc/ \Iflse
Bob =-1$% Bob = 2%

Alice = 2$ Alice =-1$

Takeaways: ncRIP for NP

* Natural and intuitive protocol

* Provers are cooperative sometimes, conflicting at other times

Super-efficient: Verifier just has to check a single edge!

Constant utility gap (~payment lost when lying)

V1, red V2, red C VX, Cx C s Vy, Cy em

29

Towards the
Solution Concept for ncRIP

Structure of the Game”?

V’s private coin flips
form Nature moves Protocol proceeds
in rounds

— Protocol

DI Provers cannot see
— the messages exchanged
with other provers

Extensive-torm Game with
Imperfect Information

V’s private coin flips
form Nature moves Protocol proceeds
In rounds

DU Provers cannot see
— - the messages exchanged
with other provers

Dealing with Imperfect Information

* Players have probabillistic beliefs about history of game so far
* Along the equilibrium path, beliefs derived naturally using Bayes rule

* Off the equilibrium path (‘unreachable information sets”)

e Different solution concepts in game theory treat it differently

Dealing with Imperfect Information

* Players have probabillistic beliefs about history of game so far
* Along the equilibrium path, beliefs derived naturally using Bayes rule
e Off the equilibrium path ("unreachable information sets”)
e Different solution concepts in game theory treat it differently
* Sequential equilibrium: external "belief system' that is consistent

« Trembling-hand: ¢ probability to all unreachable information sets

Imperfect Information: Our Perspective

* We're using the provers to solve computational problems
* Mechanism-design goal:

* Giving correct answer is best response (regardless of beliefs)
 Want beliefs at unreachable information sets to be irrelevant

* Beliefs caused by Nature moves still captured in the standard way

Strong Sequential Equilibrium (SSE)

* Refinement of sequential equilibrium
e Same as sequential equilibrium at reachable information sets
e At unreachable information sets:

e Players have a single best response (to any beliefs)

 [n ncRIP, this is usually the “correct answer”

-)
Of course not every extensive-form game will
have an SSE! But we want to design mechanisms
that can enforce the strong requirements

- _J

Solution Concept for ncRIP:
Dominant SSE

e Apply further refinements to SSE: dominant SSE
e Take max-version to eliminate dominated equilibria

e Similar to subgame-perfection, also eliminate equilibria that are
weakly dominated within “subgames”

- A protocol is a ncRIP if there exists a dominant SSE and under all such
equilibria V gets the correct answer to the decision problem

Decision node

Information set

~

A

Standard subgame Subform

‘Soundness Guarantee™: Utility Gap

* Way to model “bounded rationality” of provers
« Utility gap of g(n) means provers lose at least 1/g(n) on lying
o If § is optimal (truthful) and s’ is a deviation then,
e u(x;s*) > ulx;s)+ 1/g(n)
« Smaller the gap g(n), better the duarantee of the protocol!

« When g(n) = O(poly(n)), cay be amplified by repetition

.~ Idon’t get out of
LA A my couch for les
/Q than $10,000...

-

1. Analogous to the gap between
completeness and soundness in IPs
2. poly(n) sufficient to amplify gap

Our Main Result

The power of non-cooperative rational proofs (with
polynomial utility gap) is the same as a polynomial-time
Turing machine with adaptive queries to an NEXP oracle.

ncRIP = PNEXP

cooperativeRIP = P EX

Other Results and Implications

« For any polynomially bounded utility-gap function g(n)

. g(n)-gap-ncRIP = PNEXPle(n).

NEXP[g(n) (

! previous work)

. 2(n)-gap-coRIP =P

v
: }0<g<n>)

P PN EXP[g(n)]

Other Results and Implications

« For any polynomially bounded utility-gap function g(n)

. g(n)-gap-ncRIP = PNEXPle(n).

. 2(n)-gap-coRIP = PHEXP:g(”): (previous work)

* Take away: Non-cooperative provers can be used to handle "adaptive
gueries”, while cooperative provers cannot

v
: }0<g<n>)

P PN EXP[g(n)]

Other Results and Implications

« For any polynomially bounded utility-gap function g(n)

. g(n)-gap-ncRIP = PNEXPle(n).

. 2(n)-gap-coRIP = PHEXP:g(”): (previous work)

* Take away: Non-cooperative provers can be used to handle "adaptive
gueries”, while cooperative provers cannot

* Our understanding of adaptive-oracle complexity classes is limited

* This game-theoretic characterization can help!

v
: }0<g<n>)

P PN EXP[g(n)]

Summary and Takeaways

For any polynomially bounded utility-gap function g(n)
. g(n)-gap-ncRIP = PNEXFleln).
. 2(n)-gap-coRIP = PHEXP:g(”): (previous work)

Take away: Non-cooperative provers can be used to handle "adaptive
gueries”, while cooperative provers cannot

Our understanding of adaptive-oracle complexity classes is limited

* This game-theoretic characterization can help!
Beyond Nash for extensive-form mechanisms I

e SSE tailored for “verifiable” mechanisms }
}O(g(n))

P PN EXP[g(n)]

| ower Bound: PNEXP € ncRIP

« Uses a ncRIP protocol for NEXP
. Let L € PNEXP and M be the oracle TM for L

« Vasks P for answer bit ¢ (indicating whether x € L or not) and answer
01,05, ..., 0, t0 all oracle queries

| ower Bound: PNEXP € ncRIP

Uses a ncRIP protocol for NEXP
Let L € PNEXP and M be the oracle TM for L

V asks P; for answer bit ¢ (indicating whether x € L or not) and answer
01,05, ..., 0, t0 all oracle queries

V uses x, 0y, ..., 0, to simulate machine MO in poly-time

« Vuses P,, P; to check one of the NEXP oracle queries

« P gets $1 if their answers match, else $0

- Any dominant SSE strategy leads to correct answer |

Upper Bound: ncRIP ¢ PNEXP

* Challenging: exponential search space for poly-time machine

« (Exponential game tree) Polynomial-time V imposes exponential-
size probability distribution of Nature moves

* (Exponential strategy space) Need to search through exponentially
many strategies to one that is a dominant SSEs

Upper Bound: ncRIP ¢ PNEXP

* Challenging: exponential search space for poly-time machine

« (Exponential game tree) Polynomial-time V imposes exponential-
size probability distribution of Nature moves

* (Exponential strategy space) Need to search through exponentially
many strategies to one that is a dominant SSEs

« (Oracle can only help so much) An NEXP oracle cannot directly verify
dominant SSEs

Upper Bound: ncRIP ¢ PNEXP

* Challenging: exponential search space for poly-time machine

« (Exponential game tree) Polynomial-time V imposes exponential-
size probability distribution of Nature moves

* (Exponential strategy space) Need to search through exponentially
many strategies to one that is a dominant SSEs

« (Oracle can only help so much) An NEXP oracle cannot directly verify
dominant SSEs

* Proof |dea. (Careful pruning)

« Prune the Nature moves of V', while preserving all other properties
(dominant SSE, gap, etc)

* Prune strategy-search space based on utility gap and properties of
dominant SSEs

Conclusion

: Non- Refereed
Classic IPs :
Cooperative Games
RIPs
Cooperative Competitive

Neither Cooperative
or Competitive

Rational
IPs

Leveraging the space between cooperative and competitive incentives
Non-cooperative provers lead to simple & efficient protocols
Opens up many new directions: scaled-down proofs and arguments

SSE: independent interest as a solution concept for mechanism design

