Online List Labeling with Predictions

Shikha Singh

Williams College

Joint work with
Samuel McCauley, Benjamin Moseley and Aidin Niaparast
Algorithms with Predictions

• Worst-case is analysis often too pessimistic
• Growing line of work to analyze beyond-worst case performance of algorithms
• Focus on "instances we are more likely to see"
 • Future instances look like the past
Algorithms with Predictions

Not necessarily complete
Data Structures with Predictions

Challenge: Initially no unified theoretical framework to reason about predictions

Algorithms with Predictions

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors/ Editors</th>
<th>Year(s)</th>
<th>Conference/ Journal</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the Power of Learning-Augmented BSTs</td>
<td>Chen, Chen</td>
<td>arXiv '22</td>
<td>data structure, search</td>
<td></td>
</tr>
<tr>
<td>Learning-Augmented Binary Search Trees</td>
<td>Lin, Luo, Woodruff</td>
<td>arXiv '22, ICML '22</td>
<td>data structure, search</td>
<td></td>
</tr>
<tr>
<td>A learned approach to design compressed rank/select data structures</td>
<td>Boffa, Ferragina, Vinciguerra</td>
<td>ALENEX '21, TALG '22</td>
<td>data structure</td>
<td></td>
</tr>
<tr>
<td>Repetition- and Linearity-Aware Rank/Select Dictionaries</td>
<td>Ferragina, Manzini, Vinciguerra</td>
<td>ISAAC '21</td>
<td>data structure</td>
<td></td>
</tr>
<tr>
<td>The PGM-index: a fully-dynamic compressed learned index with provable worst-case bounds</td>
<td>Ferragina, Vinciguerra</td>
<td>Proc. VLDB Endow. '20</td>
<td>data structure</td>
<td></td>
</tr>
<tr>
<td>Learned data structures</td>
<td>Ferragina, Vinciguerra</td>
<td>INNSBDDL '19</td>
<td>data structure</td>
<td></td>
</tr>
<tr>
<td>The Case for Learned Index Structures</td>
<td>Kraska, Beutel, Chi, Dean, Polyzotis</td>
<td>arXiv '17, SIGMOD Conference '18</td>
<td>data structure</td>
<td></td>
</tr>
</tbody>
</table>
Learning-Augmented Model

• Introduced recently to give a general theoretical framework for analyzing learned algorithms

• **Design and Analysis Goal:**
 • Performance bounds as a function of error in prediction
 • Do well on both extremes (perfect and totally erroneous)
 • Degrade gracefully in between
 • Essentially want low or no overhead of using predictions
Motivating Example [Kraska et al. SIGMOD '18]

- Binary search over a sorted array of n numbers
- Worst case: $O(\log n)$ time look up
Motivating Example [Kraska et al. SIGMOD '18]

• Train a predictor $\tilde{r}(x)$ to predict x's location in array based on past data
 • $\tilde{r}(x)$ might be wrong, hopefully not too much
• "Warm start" your search at $\tilde{r}(x)$
 • Repeatedly double until you find x

![Diagram showing the process of searching for x](figure_credit: Ben Moseley)
Motivating Example [Kraska et al. SIGMOD '18]

- Analysis: Define prediction error $\eta = |\tilde{r}(x) - r(x)|$
 - New lookup cost: $O(\log \eta)$

- (Best). Perfect prediction: $O(1)$ cost

- (Worst). Completely erroneous: $O(\log n)$

- (Intermediate). Degrades gracefully with error

Figure credit: Ben Moseley
Problems Studied in this Model

- Applied to **online algorithms** [Lavastida Moseley Vassilvitskii '20]
- Warm-starting offline optimization problems
 - Bipartite matchings [Dinitz Im Lavastida Moseley Vassilvitskii '21]
 - Shortest paths [Chen Silwal Vakilian Zhang '22]
 - Convex optimization [Sakaue Oki '22]
 - Flows [Davies Moseley Vassilvitskii Wang '23]
Learned Data Structures Literature

Learned Replacements of Data Structures

Learned Adaptations of Data Structures

Learned indices:
[Kraska, Beutel, Chi, Dean, Polyzotis '18] & many follow-ups, learned hashing [Ferragina, Lehmann, Sanders, Vinciguerr '23], etc.

Learned count-min sketch
[Hsu, Indyk, Katabi, Vakilian '19]

Learned filters
[Mitzenmacher '18] & follow-ups

Learned BSTs
[Lin, Luo, Woodruff '22]
Learned Data Structures Literature

Learned Replacements of Data Structures

Learned indices:
[Kraska Beutel Chi Dean Polyzotis '18] & many follow ups, learned hashing [Ferragina Lehmann Sanders Vinciguerr '23], etc.

Learned Adaptations of Data Structures

Learned count-min sketch
[Hsu Indyk Katabi Vakilian '19]

Exciting empirical results; limited analysis under assumptions

Exciting theoretical work;
Input distribution learned; if robustness to error present - reverts to worst case

Learned filters
[Mitzenmacher '18] & follow ups

Learned BSTs
[Lin Luo Woodruff '22]
Our Goal

Apply the new **learning-augmented model** to data structures

Focus on a fundamental data structures problem:

Online list labeling
Online List Labeling Problem

• \(n \) items arrive one by one (from a totally ordered universe)

• Must be stored in **sorted order** in an array of size \(m = cn \)

• Define label(\(x \)) as \(x \)'s slot in array

• **Cost:** Minimize \# relabels (**element movements**) per insert
List Labeling Data Structure

- Insert(x) : must store it between $\text{pred } p_x$ and $\text{succ } s_x$
- Might have to move things around to make room

\[m = 6n \]
List Labeling Data Structure

- $\text{Insert}(x)$: must store it between $\text{pred } p_x$ and $\text{succ } s_x$
- Might have to move things around to make room
List Labeling Data Structure

- Insert(x): must store it between $\text{pred } p_x$ and $\text{succ } s_x$
- Might have to move things around to make room
 - Must be careful: greedy approach $\Omega(n)$ per insert

\[
m = 6n\]

\[
\text{cost} = \# \text{ relabels}
\]
Why List Labeling?

• Fundamental building block in many data structures

 • **Cache-oblivious B trees** [Bender Demaine Farach-Colton '00, Bender Demaine, Iacono Wu '02, Brodal Fagerberg Jacob '02] etc.

 • Graph data structures [Wheatman Burns '21, Wheatman Xu '18, Wheatman Xu '21, Pandey Wheatman Xu Buluc '21] etc.

• Studied for over four decades under various names

 • Sequential file maintenance [Willard '82, '86]

 • Order maintenance [Dietz '82, Dietz Slator '87]

 • Sparse tables [Itai, Konheim, Rodeh '81]

 • **Packed-memory arrays** [Bender, Demaine, Farach-Colton '00]

• We call any data structure for this problem a list labeling array (LLA)
List Labeling: State of the Art

• Deterministic LLAs:
 - $O(\log^2 n)$ amortized [Itai Konheim Rodeh '81] and worst-case LLA [Willard '82, '86], simplified by [Bender Cole Demaine Farach-Colton Zito '02], [Katriel '02], [Bender Fineman Gilbert Kopelowitz Montes '17]
 - Best possible for deterministic LLAs [Bulánek Koucky Saks '12]

• Randomized LLAs:
 - Recent breakthrough: $O(\log^{3/2} n)$ expected amortized [Bender Conway Farach-Colton Komlós Kuszmaul Wein '22] extends HI PMA [Bender Berry Johnson Kroeger McCauley Phillips Simon Singh Zage '16]

• Specialized LLAs:
 - Adaptive PMA [Bender Hu '07] and Rewired PMAs [DeLeo Boncz '19]

$\Omega(\log n)$ lower bound [Bulánek Koucky Saks '13]
List Labeling in Learned Indices

- Directly motivated by work on learned indices
- Back to the original motivation from [Kraska et al. 2018]
List Labeling in Learned Indices

- To support dynamic learned indices:
 - Need to efficiently maintain a dynamic sorted array!

Learned Index model

Need a Learned LLA!

Sorted array
Gapped Arrays

- Past work on learned indices used a greedy list labeling data structure: a gapped array [Ding et al. SIGMOD '20]
 - $\Omega(n)$ element movements per insert in worst case
- Assume uniform random insertions
 - $O(\log n)$ w.h.p. [Bender Farach-Colton Mosteiro '06]
Main Question

• How to leverage the learning-augmented framework to design a learned LLA that guarantees:
 • Best possible performance on extremes: best & worst predictions
 • Performance degrades gracefully with error

\[\eta = 0 \quad \rightarrow \quad \eta = \infty \]
List Labeling Prediction Model

- n elements arrive one by one
 - For simplicity, ignore deletes for now
- **Final rank** of element x is $r(x)$ after all n elements arrive
- Each insert x arrives with a **predicted rank** $\tilde{r}(x)$
 - Assigned adversarially based on past inserts/predictions
- **Prediction error** $\eta_x = |r(x) - \tilde{r}(x)|$
- **Maximum error** as $\eta = \max \eta_x$
List Labeling with Predictions

Classical

Learned

Know rank so far; final rank r_x is unknown

May disagree with $\tilde{r}(p_x)$ or $\tilde{r}(s_x)$
Our Results

• [Today's talk] A Learned List Labeling Array that
 • Uses existing worst-case LLAs as a blackbox
 • Guarantees $C(\eta)$ amortized cost where $C(n)$ is the amortized cost of black-box LLA
 • Optimal for any error η among deterministic LLAs
 • Empirically outperforms state-of-the-art LLAs
• [Aside] Stochastic predictions
 • Improved bounds in terms of mean and variance of unknown distribution from which error is sampled
learnedLLA: Description

- At any time, partitioned into ℓ actual LLAs P_1, \ldots, P_ℓ
- Each LLA is assigned contiguous ranks and slots that partition $\{1, \ldots, n\}$ and $\{1, \ldots, m\}$ respectively

$\# \text{ slots} = 6 \cdot \# \text{ assigned ranks}$
learnedLLA: Insert Idea

- If new insert's predicted rank agrees with pred and succ placement, insert into LLA containing predicted rank.
- If it conflicts with pred (succ), insert into the LLA of pred/succ.

slots = 6 \cdot \# assigned ranks
learnedLLA: Example Insert

• \(\tilde{r}(x) \) is **assigned to** red LLA, but \(\text{pred}(x) \) is **stored in** green LLA

• Insert \(x \) to **green** LLA

• If green LLA more than half full, merge with **grey, orange, red**

slots = 6 \cdot \# assigned ranks
learnedLLA: Example Insert

- $\tilde{r}(x)$ is assigned to red LLA, but pred(x) is stored in green LLA
- Insert x to green LLA
- If green LLA more than half full, merge with grey, orange, red

```
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17
1, 2, 3, 4, 5, 6, 7, 8
1, 2, 3, 4
1, 2
1
5, 6, 7, 8
5, 6
5
9, 10, 11, 12
9, 10
9
9, 10, 11, 12
11, 12
11
9, 10, 11, 12
13, 14, 15, 16
13, 14
13
13, 14
15, 16
15
15, 16
15, 16

# slots = 6 \cdot \# assigned ranks
```
learnedLLA: Insertion

- $i_x \leftarrow $ LLA whose assigned ranks contain \tilde{r}_x
- i_p (resp i_s) \leftarrow LLA whose assigned ranks contain p_x (resp s_x)

Insertion:

- If $i_p > i_x$: insert x into i_p
- Else if $i_s < i_x$: insert x into i_s
- Else: insert x into i_x
- If LLA inserted to more than half full
 - Merge with "sibling" LLA

Idea: Some element must have error \propto size of overfull LLA

Let blackbox LLA handle actual slot within

Only case that uses the predicted rank
learnedLLA: Analysis Idea

- **Key lemma:** If P is an actual LLA, then it contains some element x with high enough error: $\eta_x \geq |P|/2$

 - 3x elements as # assigned ranks

 - Some elem responsible for pushing others to this LLA

slots = 6 \cdot # assigned ranks
learnedLLA: Analysis Idea

- **Key lemma:** If \(P \) is an actual LLA, then it contains some element \(x \) with high enough error: \(\eta_x \geq |P|/2 \)
 - 3x elements as \# assigned ranks
 - Responsible for pushing other elements

Largest LLA size = \(O(\eta) \)

slots = 6 \cdot \# assigned ranks
learnedLLA: Analysis Idea

- **Total cost** = Relabels within LLAs + Relabels during merges

 Dominated by cost of final LLAs

 Linear cost; lower order term

slots = 6 \cdot \# \text{assigned ranks}
learnedLLA: Analysis Idea

- Total cost = Relabels within LLAs + Relabels during merges

At most $C(\eta)$ amortized cost of each final LLA; all n partitioned across final LLAs

slots = 6 \cdot \# assigned ranks
Lower Bound Idea

- Easier to see that can't do better when \(\eta = 0 \) or \(\eta = n \)

- **Question.** How to prove optimality for intermediate error?

- **Idea.** Apply classic lower bound [Bulánek Koucky Saks '12] to each \(n/\eta \) subproblems of size \(\eta \)

- **Challenge.** Can't force big LLA to only use assigned slots
Experiments

- LearnedLLA outperforms PMA, APMA on numerous real data
- Inherits performance of APMA when using it as blackbox

![Scaling Test Data Size Graph]

<table>
<thead>
<tr>
<th>Amortized cost</th>
<th>Gowalla (LocationID)</th>
<th>Gowalla (Latitude)</th>
<th>MOOC</th>
<th>AskUbuntu</th>
<th>email-Eu-core</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLAs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APMA</td>
<td>7.38</td>
<td>15.63</td>
<td>16.70</td>
<td>10.84</td>
<td>21.43</td>
</tr>
<tr>
<td>LearnedLLA + PMA</td>
<td>3.36</td>
<td>6.06</td>
<td>11.99</td>
<td>14.27</td>
<td>16.55</td>
</tr>
<tr>
<td>LearnedLLA + APMA</td>
<td>3.36</td>
<td>6.15</td>
<td>12.13</td>
<td>8.49</td>
<td>16.55</td>
</tr>
</tbody>
</table>
Conclusion

- Learning-augmented framework provides a "worst case" way to reason about learned algorithms
- Only been applied to online algorithms/optimization problems
- Online list labeling structure was very amenable to this model
- **Exciting future direction**: opportunity to exploit this model for other data structures
 - **Main challenge**: what to predict and what not to predict
 - E.g. how to handle insert + query workloads?
- **Open problem from earlier**: How to tackle average case error?