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Abstract This paper introduces the kissing problem: given a rectangular room with
n people in it, what is the most efficient way for each pair of people to kiss each other
goodbye? The room is viewed as a set of pixels that form a subset of the integer grid.
At most one person can stand on a pixel at once, and people move horizontally or
vertically. In order to move into a pixel in time step t, the pixel must be empty in time
step t− 1.

The paper gives one algorithm for kissing everyone goodbye.

(1) This algorithm is a 4 + o(1)-approximation algorithm in a crowded room (e.g.,
only one unoccupied pixel).

(2) It is a 45 + o(1)-approximation algorithm for kissing in a comfortable room
(e.g., at most half the pixels are empty).

(3) It is a 25+o(1)-approximation for kissing in a sparse room with two people
abutting the far walls of the room.

This paper gives optimal solutions for small cases, which were found using a
heuristic state space search (IDA*).
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1 Introduction

Leaving a meeting (or party or other gathering) involves different rituals in different
cultures. In the U.S., one often takes one’s leave via a multicast protocol (“Goodbye
everyone. I had a great time tonight. Happy Haiku Day.”1). In many other parts of
the world (in our experience, Latin America and France) it is polite to takes one’s
leave via a linear number of unicast protocols—kisses on the cheek or other hand-
shake protocols (e.g., handshakes). When a large number of people quit a gathering
simultaneously, it may be difficult for all to say goodbye efficiently, because of the
complicated routing so that each pair of people can meet. This paper gives algorithms
for scheduling and routing the individual goodbyes.

The goodbyes take place on a set of pixels that comprise an m×n grid, the room
in which the shindig took place. Each pixel may be unoccupied or may be occupied
by exactly one person. (This model does not allow for parties in which people may
stand on each other’s heads). We have a set P = {1 . . . p} of people. At each unit of
time, any subset S ⊆ P of people can move to adjacent unoccupied pixels.2

Our goal is to minimize the makespan, that is, the number of time steps until
people have completed all pairwise kisses. A kiss is transacted between i and j when
they occupy adjacent pixels. Note that multiple kisses may occur simultaneously in
this model, although we do not suggest that you try this in practice, no matter how
quickly you wish to leave a party.

This kissing problem is reminiscent of several other problems in swarm or multi-
agent robotics, optimization, and box-moving.

For example, the kissing problem has similarities to the traveling salesman prob-
lem (TSP) on a rectilinear grid [15, 34]: to leave the gathering efficiently, you find a
short tour among all p − 1 others (the “cities”). However, there are differences: (1)
In the kissing problem, unlike TSP, cities can move to you. (2) In the kissing prob-
lem, people serve as salesman for themselves and as cities for each other. (3) People
(unlike salesman) take up space—only one person can stand on the same pixel at any
time. (4) In the kissing problem there is a notion of neighborhoods (reminiscent of
TSP with neighborhoods [3, 17]) because to say goodbye to someone, you move to a
neighboring pixel and kiss. You rarely say goodbye to someone by stepping on him.
To summarize, the problem has a whiff of TSP flavor, but remains otherwise distinct.

The kissing problem is also related to the 15-puzzle [33, 43] and other sliding
block problems [22, 27]. Sliding-block puzzles generalize the 15-puzzle by allowing
unmovable blocks, and blocks that are larger than 1 × 1. Generally the goal of a
sliding-block puzzle is to move a block to a single location (the “warehouseman’s
problem” [21]), to find out if a single block is movable [18, 19], or somehow reorder
all blocks [20]. In contrast, in the kissing problem, the objective is for all blocks
to touch each other. In this paper, we only consider gatherings that take place in
rectangular rooms without obstacles (e.g., it’s ok to stand on the coffee table).

Other examples of multi-agent problems in robotics include pattern formation [6,
11, 14, 39], dispersion [25, 41], exploration and mapping [7, 24, 29, 35, 37, 38, 44],

1 April seventeenth. Lip service to Haiku Day. Just an FYI.
2 Two pixels are said to be adjacent if they share an edge.
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rendez-vous [1,2,9,12,14,28], and motion planning [4–6,8,13,16,23,26]. Ref. [42],
in particular, considers what happens when an individual robot can speak only to its
neighbors and there is no secure communication so that each robot must tell each
other robot its message individually. Thus, if the message needs to be conveyed pair-
wise among all robots, then this is an instance of the kissing problem.

This problem is also similar to round-robin tournaments, in which each player
must play every other. The pairwise meetings of round-robin tournaments are the
same, but the kissing problem allows for simultaneous kisses and restricts the move-
ments of the players, and thus requires different methodology. However, the “cycling
without wallflowers” algorithm presented in Section 2 is very similar to the Circle
Method of round-robin tournaments described in [31, 40].

Results. This paper presents an approximation algorithm for the kissing problem
with the following guarantees:

– Our kissing algorithm gives a 4 + o(1)-approximation to the kissing problem in
a crowded room, in which all pixels in the room are occupied except for one.
In particular, it gives a 1 + o(1)-approximation for a 2 × n grid, and achieves
optimality for 2× 3 and 2× 4 grids.

– The kissing algorithm gives a 45+ o(1)-approximation in a comfortable room, in
which the number of unoccupied pixels is no more than the number of people.

– The kissing algorithm gives a 25+o(1)-approximation in a sparse room, in which
there are more unoccupied pixels than people, as long are there are people abut-
ting the furthest pair of walls. Without this butts-abutting restriction, the algorithm
still works, but the approximation ratio can be arbitrarily large.

– We ran experiments to determine optimal solutions for some small cases of the
kissing problem using IDA* state space search [10]. These results demonstrate
that our algorithm is optimal for 2× 3 and 2× 4 grids in the crowded room case.

Map. In Sections 2, 3, and 4 we analyze the kissing problem in the crowded-room
case, the comfortable-room case, and the sparse case respectively.

2 The Kissing Problem in a Crowded Room

A crowded room has only one unoccupied pixel, so only one person can move at a
time. In this section we present an algorithm for crowded 2 × n grids that performs
within a 1 + o(1) factor of optimal. Then we generalize the algorithm to become a
4 + o(1)-approximation algorithm for arbitrary n×m grids.

Our algorithm is based on a circuit that each person follows around the grid. A
wallflower is a person who stands still and does not participate in this circuit. The
algorithms we present do not always have wallflowers. A cycle is a set of moves
where each non-wallflower person moves forward once along the circuit. For the
2× n grid, we can construct the circuit by keeping the two rightmost people still and
cycling everyone else (“cycling with wallflowers”) or by cycling all the people; see
Figure 1. When there are no wallflowers, people only need to cycle through half the
grid to kiss everyone, whereas with wallflowers, some people must cycle through the
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(a) (b)

Fig. 1 Two methods for solving the kissing problem on a 2× 7 grid. Arrows indicate the direction of the
two routes. (a) The two rightmost people (shown in black) remain stationary. (b) Everyone participates in
the cycle.

entire grid, yielding the additional factor of 2. However, when there are wallflowers,
the lower-order terms are better because the cycle is shorter, so wallflowers lead to
better solutions for small n.

Lemma 1 On a crowded 2 × n grid, cycling both with and without wallflowers en-
ables all people to kiss each other. This requires n cycles without wallflowers and
2n− 3 cycles with wallflowers.

Proof For the case with no wallflowers (Figure 1b), number the pixels clockwise
from 1 to 2n starting with the bottom-right pixel, continuing to the left across the bot-
tom row, and then left to right across the top row. If there are wallflowers (Figure 1a),
they are excluded from the number, and we only number the remaining pixels—in
other words, the numbering proceeds as it would in the 2× (n− 1) case.

We define the outgoing route as the pixels in order from 1 to n, and the incoming
route as the pixels in order from n + 1 to 2n. The route is used to keep track of the
two halves of the cycle that a person can travel. The routes are shown as arrows in
Figure 1.

Consider only the kisses that happen when two people are in different routes. If
a kiss happens between a person at pixel i and a person at pixel j, one is above the
other, so we have i+ j = 2n+ 1.

Since there is only one unoccupied pixel, a cycle requires one time step per per-
son, for a total of 2n − 1 time steps. Let pi denote the person who stands at pixel i
when the algorithm begins. After t cycles, pi stands on pixel pi(t) ≡ i+ t (mod 2n).
Note that during a cycle, there will be intermediate positions where some people
have moved forward, but others have not yet. During a cycle, if pi has not yet moved,
pi(t) ≡ i+ t− 1 (mod 2n).

People pi and pj kiss when they are in the same column. A kiss at the end of cycle
t occurs if pi(t) + pj(t) ≡ 1 (mod 2n) which means that i + j + 2t ≡ 1 (mod 2n).
There may also be kisses during the cycle. Assume without loss of generality that
i < j. Consider an intermediate point in the cycle when pj has moved but pi has not.
People pi and pj kiss when i+ j + 2t− 1 ≡ 1 (mod 2n).

Thus, two people kiss after cycle t if 2t ≡ 1− i− j (mod 2n) and at some point
during cycle t if 2t − 1 ≡ 1 − i − j (mod 2n). Once t has reached n, every pair of
people has kissed.

The analysis is similar for the wallflower case. The cycles take place on a 2×n−1
subset of the grid, meaning that after n − 1 cycles all non-wallflowers have kissed.
The wallflowers have already kissed each other, so now we need to ensure that they
have kissed everyone else. Person pi has kissed both wallflowers, once he has passed
through pixels 1 and 2(n − 1). Therefore, everyone has kissed the wallflowers after
2n− 3 cycles. ut



5

Fig. 2 An illustration of the lower bound for the hallway case. Once the striped person moves (shown with
an arrow), whoever moves next (the dark grey person, for example) must have already kissed him.

Lemma 2 A lower bound on the kissing problem on a crowded 2 × n grid is 2n2 −
6n+ 4.

Proof We determine the number of kisses that need to be completed over the course
of the algorithm, then show an upper bound on the number of kisses attainable per
move, leading to a lower bound on the number of moves necessary for all to kiss.

Kisses that are made in the initial state do not need to be made during the algo-
rithm. Initially, there are 3n − 4 or 3n − 5 kisses when the unoccupied pixel is in a
corner or non-corner, respectively.

We next show that after the initial kisses, at most two kisses are made per turn;
that is, # kisses ≤ 2(# moves). When pi moves to an adjacent empty pixel, he has at
most three new neighbors (because this is the 2× n case). But one neighbor must be
empty, the pixel vacated by pi, leaving only two people for pi to kiss.

This bound can be improved to show that only one kiss can be made per turn after
the first, when two kisses can be made. If Person 1 moves into an empty pixel, that
pixel must have been vacated by someone else (Person 2). But Person 2 must have
already kissed Person 1 before vacating, so they have already kissed when Person 1
moves into the pixel. An example of this is shown in Figure 2; if the striped person
moves as shown by the arrow, whoever moves on the next timestep (like the grey
person that was to his left) will have already kissed the striped person. More formally,
consider the turn t > 1, where s is the unoccupied pixel. Let pi move into s at time
step t + 1. Pixel s must have been occupied by some person pj at time t. We know
that pi is adjacent to s at turn t, so pi and pj have already kissed. Furthermore, pj is
a neighbor of s as it only moved once. Therefore, when pi moves into s, one of its
neighbors must be unoccupied, and one must be a person he has already kissed. Since
each pixel has at most three neighbors, only one new kiss can be made per time step
after the first, when two kisses can be made. Therefore,

(# kisses) ≤ (# moves made) + 1.
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We can take the number of kisses necessary, subtract the number of initial kisses,
and combine with the bound on the number of moves t to get(

2n− 1

2

)
− (3n− 3) ≤ t+ 1.

Solving for t,
t ≥ 2n2 − 6n+ 3.

ut

Theorem 1 For a 2× n grid in the crowded room, cycling without wallflowers takes
2n(n− 1) time. Cycling with wallflowers takes (2n− 4)(2n− 3) + bn/2c − 1 time.
Cycling without wallflowers yields a 1 + o(1) approximation to optimal.

Proof Without wallflowers, by Lemma 1, the algorithm moves 2n − 1 people per
cycle, and continues for n cycles, for a running time of 2n2 − n. Similarly, with
wallflowers, let p be the person who begins next to a wallflower, and moves away
from it during a cycle. There must be (2n − 3) cycles before p kisses the other
wallflower. However, if the wallflowers are chosen to be as close to the initial un-
occupied square as possible, the first cycle need not be completed for p to move.
In the worst case, the unoccupied square is bn/2c − 1 away from p. The remaining
(2n − 4) cycles must be completed, each of which moves (2n − 3) people, leading
to a total running time of (2n− 4)(2n− 3) + bn/2c − 1.

We divide the running time without wallflowers by the lower bound to get the
approximation

2n2 − n

2n2 − 6n+ 3
= 1 + o(1).

ut

Corollary 1 The cycle algorithm on the crowded 2× n room without wallflowers is
faster if n ≥ 5 and the cycle algorithm with wallflowers is faster if n < 5.

For the 2 × 3 and 2 × 4 grids, we used a heuristic search to show that this gives
one of the optimal solutions; see Figure 3. It is unknown whether the cycling without
wallflowers is optimal for n ≥ 5.

1 2 3
4 5 �

1 2 3
4 � 5

1 � 3
4 2 5

1 3 �
4 2 5

1 3 5
4 2 �

1 3 5
4 � 2

1 � 5
4 3 2

1 5 �
4 3 2

Fig. 3 One of four optimal solutions for the 3× 2 case with an unoccupied corner. The unoccupied pixel
is shown in black. The people are numbered simply for distinguishability.
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The cycle method can be extended to larger grids in what we call the boustrophe-
don algorithm.3 This algorithm uses the same idea of a continuous cycle of people
from the hallway case. When m or n is even, bend the cycle snakelike throughout the
room, alternating right to left and left to right. If one of the dimensions of the room
is odd, then the furrows run parallel to this dimension; see Figure 4a.

(a) (b)

Fig. 4 (a) The circuit for an 7× 8 grid. The path curves boustrophedonically and the furrows run parallel
to the odd dimension. (b) The circuit for a 9 × 11 grid. Each person moves along the dotted lines in the
direction of the arrows, except the wallflowers, who are colored black. Note that the wallflowers abut both
ends of the path.

If both m and n are odd, the algorithm uses a different setup; see Figure 4b. Mark
the people in the third row from the bottom, except those in the leftmost or rightmost
two columns, as wallflowers. The cycle starts immediately above the wallflowers and
snakes around the upper right (m− 2)× (n− 3) grid as in the even case. Wallflow-
ers are excluded (as they are in many gatherings). The cycle then goes around the
remainder of the grid, under the wallflowers, and up to fill the rest of the pixels. Note
that the path starts and ends adjacent to the wallflowers. In this configuration, we will
show that people only need to walk a limited distance around the circuit to guaran-
tee that every moving person has kissed everyone else. We must reexamine how long
each person walks due to the corners in the routes; while it is intuitively clear that two
people will still pass even as the circuit bends, the proof of Lemma 1 does not apply
immediately. Note that wallflowers have not yet kissed each other, so at the end, the
2× (m− 4) solution is used with the wallflowers and the people immediately above,
to ensure that all wallflowers kiss.

3 Look it up
t’nod uoy fi
know what
-ehportsoub
onic means.
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We divide the grid into two parts, an outgoing route and incoming route. These
are defined similarly to those in the 2 × n case, each route representing one of the
two paths of width one that make up the path of width two filling the room. These are
shown in Figure 4 as two separate dotted lines, with arrows to show the direction of
travel.

Lemma 3 On a n×m crowded room, the boustrophedon algorithm enables all peo-
ple to kiss each other. If ` is the length of the longer of the two routes, at most 2`− 1
cycles are required.

Proof Consider two people pi and pj . Let the number of pixels remaining on their
routes be `i and `j , respectively, and assume without loss of generality that `i ≤ `j .

We consider three cases for the initial placement of pi and pj relative to one
another, assuming that they do not kiss in the initial placement. In Case 1, pj lies
on the opposite route from pi, but they are moving towards each other; that is, pj is
adjacent to a pixel between pi and the end of pi’s route (a pixel after pi). Case 2 has
pj on the same route as pi. Case 3 has pj on the opposite route from pi, but pj is
adjacent to a pixel that is between pi and the beginning of pi’s route (a pixel before
pi). Note that if pi and pj are in a corner with pj on the inside and pi on the outside
of the corner, pj has neighbors both before and after pi, whereas pi has no neighbors
on the opposite route at all. In this situation, we define pi and pj to be in Case 3.

We define two people as having passed if they were in Case 1 in the past and are
now in Case 3. In other words, they were heading towards each other, and are now
heading away from each other. We show that pi and pj pass or kiss in no more than
2` − 1 cycles, regardless of their starting state. We then show that if pi and pj pass,
they kiss.

(a) (b) (c)

Fig. 5 The three cases used in the proof. pi and pj are colored grey. (a) In Case 1, pi and pj are moving
towards each other. (b) In Case 2, pi and pj are on the same route. (c) In Case 3, pi and pj are moving
away from each other.

Case 1: After `i − 1 cycles, pi is in the last pixel on his route. Person pj must still be
on his route since `i ≤ `j , so pi and pj are in Case 3, or pj is in the first pixel of his
route, in which case they have kissed. Therefore, pi and pj have passed or kissed in
at most `i − 1 cycles.
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Case 2: After `i steps, pi is on the first pixel of the opposite route, so pi and pj are
in Case 1 or have kissed. After another `j − `i − 1 steps they are in Case 3 or have
kissed (similarly to the proof for Case 1), for a total of `j − 1 steps at most until j
and i pass.
Case 3: After `i cycles, pi is on the same route as pj , and pj has `j − `i pixels after
him on his route. We examine two later points: (1) After `j − `i more cycles, pj will
be the first pixel on its opposite route, and pi will remain on the same route, so they
will be in Case 1. (2) After `− 1 cycles, pi will be in the last pixel of his route, so pi
and pj must be in Case 3 again. They will be in Case 1 at point 1, and will be in Case
3 at point 2, so they will have passed after a total of `+ `i − 1 ≤ 2`− 1 cycles.

Now we show that if two people pi and pj pass, they must kiss. Note that the
transition from Case 1 to Case 3 must be direct; by the case definitions it is impossible
to enter Case 2 from Case 1. People pi and pj may kiss between Case 1 and Case 3,
in which case our assumption is proven. If not, the points are in Case 3 immediately
after Case 1. Let t be the number of cycles after which pi and pj first enter Case 3
from Case 1. At time t − 1, pi and pj are in Case 1. Therefore, they are in different
routes at t− 1; assume pi moves first. Let R(p(t)) be the pixel adjacent to p(t) in the
opposite route (if there is more than one, choose the one with the longest distance to
the end of the route. If p has no neighbor in the opposite route, take the neighbor of
the closest pixel to p that does have a neighbor in the opposite route, again breaking
ties by longest distance to the end of the route). Since each person moves forward one
step during a cycle, pi(t− 1) is exactly one step away from pi(t), and the same holds
for pj . We know that at t, pi and pj are in Case 3, so by definition R(pj(t)) is behind
pi(t), likewise R(pi(t)) is behind pj(t). Then both R(pi(t)) and pj(t−1) are behind
pj(t), so since pj(t− 1) is adjacent to pj(t), R(pi(t)) is behind or equal to pj(t− 1)
. If R(pi(t)) is behind pj(t− 1), R(pj(t− 1)) is behind pi(t). But R(pj(t− 1)) is in
front of pi(t− 1) since they are in Case 1, which contradicts that pi(t) and pi(t− 1)
are adjacent. But then the other case is true, R(pi(t)) is equal to pj(t− 1), so pi(t) is
adjacent to pj(t− 1). Since pi was assumed to move first, these two positions occur
at the same time, and pi and pj kiss. ut

Lemma 4 A lower bound for the kissing problem on a crowded n × m grid is
(m2n2 − 7mn+ 12− 2m− 2n)/4.

Proof Each non-corner border pixel is adjacent to three other pixels, each corner is
adjacent to two, and the remaining pixels are adjacent to four, for a total of (8+6(n−
2)+6(m−2)+4(n−2)(m−2))/2 = 2nm−n−m kisses. This formula overcounts
at least two kisses we attributed to the unoccupied pixel. Therefore, there are no more
than 2nm− n−m− 2 kisses initially.

As in Lemma 2, when a person moves after the first time step, one of his neighbors
must be unoccupied and one he has already kissed. Since each pixel has at most four
neighbors, only two new kisses can be made per turn, except for the first time step,
when three kisses can be made. Therefore, (# kisses ) ≤ 2(# moves made) + 1.

We take the number of kisses necessary, subtract the number of initial kisses, and
combine with the bound on the number of moves t to get

t ≥ n2m2/4− 7mn/4 + n/2 +m/2 + 1.
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ut

Theorem 2 The boustrophedon algorithm on an n×m crowded room is a 4+ o(1)-
approximation algorithm.

Proof By Lemma 3, the algorithm must run for 2` − 1 cycles. If one of the sides
is even, ` ≤ mn/2 + 4. This bound comes about because each time the path bends
the longer route increases by at most 4, but since it bends back and forth the routes
increase alternately. In total, therefore, the algorithm takes (nm − 1)(nm + 7) =
m2n2 + 6mn− 7 time. We thus obtain an approximation ratio of

(nm− 1)(nm+ 7)

n2m2/4− 7mn/4 + n/2 +m/2 + 1
= 4 + o(1).

The value of ` is more complicated in the odd case because the circuit is less
regular. There is first a maximum route length of 2 + m + n over the irregular L-
shape, then the (m− 3)(n− 2)/2 + 4 more to fill the remaining (m− 3)× (n− 2)
grid. So in total, ` ≤ (m− 3)(n− 2)/2 +m+ n+ 6. Each cycle takes nm−m− 3
time, as all pixels except the one unoccupied and the m− 4 wallflowers must move.
After this, we must do the 2 ×m − 4 algorithm at a cost of 2(m − 4)(m − 5). We
thus obtain an approximation of

((m− 3)(n− 2) + 2m+ 2n+ 11)(nm−m− 3) + 2(m− 4)(m− 5)

n2m2/4− 7mn/4 + n/2 +m/2 + 1
= 4+o(1).

ut

There are several other algorithms that require O(m2n2) time and thus achieve
the same approximation. For example, it is possible to use the crowded hallway algo-
rithm as a black box, making each pair of columns kiss.

3 The Kissing Problem in a Comfortable Room

This section considers kissing in a comfortable room, in which k pixels are unoccu-
pied for 1 < k < mn/2. Because there are k unoccupied pixels, up to k moves and
3k kisses can be made per time step. This section generalizes the boustrophedon al-
gorithm from the previous section. The same circuit is used, so the series of positions
after each cycle is the same, but more gaps means that people travel faster around
the circuit. The boustrophedon algorithm now delivers a 45 + o(1)-approximation to
optimal.

Lemma 5 In a comfortable room, after less than k time steps, we can guarantee that
k people will be able to move forward along the cycle at each time step.

Proof Intuitively, each person with more than one empty space in front of him moves
forward along the cycle (into the empty space) at each time step. Then any set of
consecutive empty pixels must either stay the same in size (if the person in front and
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behind the set both move forward), or decrease in size (if only the person behind it
moves forward). Since less than half of the pixels are empty, there must be a person
with another person in front of him, and he cannot move, so the set behind him
decreases in size. Therefore, the total number of consecutive empty pixels decreases
each step, and since that total is no more than k, the people are appropriately spaced
after k time steps. ut

Since we have k unoccupied pixels, after the people are dispersed it is possible for
k movements to be made simultaneously. However, moving everyone simultaneously
may lead to missed kisses when two people move past each other simultaneously on
opposite routes. When this happens, the movements are split into two time steps such
that any person in the outgoing route moves in one time step, and the people in the
incoming route move in the next.

Lemma 6 On a n×m grid with k blanks, the boustrophedon algorithm enables all
people to kiss each other.

Proof We follow a similar structure to the proof of Lemma 3, and show that any two
people pi and pj must kiss eventually.

As in the proof of Lemma 3, pi and pj must either pass or kiss. The proof of this
extends immediately to the case with multiple blanks because by definition of a cycle,
adding extra blanks does not change the position of pi and pj after a cycle—each has
moved forward once. We proved that after 2`− 1 cycles pi and pj must pass or kiss;
because the positions of all people after each cycle is the same, this remains true even
if there are multiple blanks.

Then we only need to show that if two people pass, they kiss, even if there are
multiple blanks (allowing both people to move simultaneously). If two people pass,
they must be on opposite routes by definition. But in our algorithm, two people
on different routes cannot move at the same time (each route moves individually).
Therefore, if two people pass, they must move one at a time, and the argument from
Lemma 3 still applies. ut

Lemma 7 In a comfortable room, the maximum number of kisses resulting from a
given number of moves is (# kisses ) ≤

⌈
5k
2

⌉
(# moves). A lower bound for the kissing

problem on a comfortable n×m grid is (mn− k)(mn− k − 1)/(5k + 1).

Proof Similarly to the crowded-room case, if a person pi moves into a pixel, one of
the neighbors of the pixel was just vacated by pi and now must be empty. Thus the
number of kisses gained per move is no more than three.

However, this bound can be improved using a similar idea to that for the crowded-
room case. Assume that pi is at pixel s, which has only one adjacent unoccupied pixel
at time t. Therefore, pi has already kissed all people adjacent to s at time t+1 (no new
people can be adjacent to s as the only unoccupied pixel next to s is now occupied by
pi). But these neighbors are the only people who can move into s, so no matter who
moves into s, they have already kissed pi and do not get a kiss from anyone in the
pixel they vacated (as the pixel is unoccupied), for a total of two new kisses at most.

However, if s has more than one adjacent unoccupied pixel at time t, it is possible
that some new person pj is adjacent to s at time t+1. But then, pj is adjacent to two
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(a) (b)

Fig. 6 An example for the lower bound for the comfortable room. (a) The striped person moves right, and
the grey person moves into a space next to the one just vacated. (b) If the grey person moves down during
the next time step he kisses three new people.

unoccupied pixels at t+1 (the pixel it vacated and s, which must also be unoccupied
as it previously contained pi), so pj can only gain two kisses. However, if it moves
into s at time t+2, it may kiss all three people. Each unoccupied pixel can produce no
more than five kisses for every two moves, so (# kisses ) ≤

⌈
5k
2

⌉
(# moves). Figure 6

shows an example where a person can kiss two people during one time step, and kiss
three during the next time step.

There are
(
mn−k

2

)
kisses that need to be made. There is no lower bound on the

number of kisses that are made in the initial state, as the people could be in a checker-
board pattern with no two neighboring people and no kisses. Solving, we get

t ≥ (mn− k)(mn− k − 1)/(5k + 1).

ut

We formalize the comfortable boustrophedon algorithm as follows: First, move
any person with more than two unoccupied pixels ahead of him along his cycle for-
ward, as in Lemma 5. Continue moving such people until there are no two consecutive
unoccupied pixels along the cycle. Second, move the k people with unoccupied pix-
els in ahead of them forward along the cycle. Continue this movement until all pairs
of non-wallflowers have kissed. Third, if both m and n are odd, there are wallflow-
ers which have not kissed any people. Move a blank square adjacent to one of the
wallflowers, and then perform the crowded hallway case from Section 2 on the row
of wallflowers and the row above them, causing all pairs of wallflowers to kiss.

Theorem 3 The comfortable boustrophedon algorithm on a grid with 1 < k <

mn/2 blanks takes 2((m−3)(n−2)+2m+2n+11)(nm−m−3)
k + 2(m− 4)(m− 6) +m+

n+ k time, and gives a 45 + o(1)-approximation algorithm.
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Proof The first step in the algorithm is to spread out the unoccupied pixels as men-
tioned in Lemma 5, at a cost of ≤ k time. As mentioned in the proof of Lemma 6,
this algorithm has the same number of cycles as the crowded room case, which was,
in the worst case, 2`−1 = (m−3)(n−2)+2m+2n+11. During each cycle, a total
of nm − m − 3 people must move forward, and by Lemma 5, exactly k can move
forward every two time steps (one per route), so each cycle takes d2(nm−m−3)/ke
time steps. After these cycles have been completed, as with the crowded room case,
we must make sure the wallflowers kiss if both m and n are odd. There may be
only one unoccupied pixel in the 2 × (m − 4) grid, so we cannot take advantage of
parallelization and this step takes 2(m − 4)(m − 6) time in the worst case. An ad-
ditional m + n time may be required to bring an unoccupied square adjacent to the
wallflowers. Therefore, the total running time is

2 ((m− 3)(n− 2) + 2m+ 2n+ 11) (nm−m− 3)

k
+2(m−4)(m−6)+m+n+k.

(Note that we did not take the ceiling of the time required for a cycle; this will at worst
add two to the total running time). Dividing by the lower bound, we get 45 + o(1),
the approximation for this algorithm. ut

4 The Kissing Problem in the Sparse Room

This section considers kissing in a sparse room in which the number of empty pixels
is k ≥ mn/2 (more than half the room is unoccupied).

Our strategy is to conglomerate all the people into the bottom rows using a sorting
algorithm for a two-dimensional grid, and then to use the algorithm for comfortable
rooms. We assume without loss of generality that m ≥ n (there are more columns
than rows). Furthermore, we assume that one or more people occupy the first and last
columns. If not, the algorithm still works, but the approximation ratio may be worse.
We leave the approximation ratio for instances without people in the first and last
column as an open problem.

We compact the people into the lower part of the room using a sorting algorithm
on a mesh, e.g., [30, 32, 36]. An asymptotically optimal sorting algorithm leads to a
constant approximation. An algorithm for sorting on a mesh arranges the elements in
numerical order, boustrophedonically, from bottom to top.

The sparse boustrophedon algorithm, which solves the kissing problem in a sparse
room, proceeds as follows: First, label the p people using the odd numbers 1, 3, . . . 2p−
1, and label the unoccupied pixels with the unused integers from 1, . . . ,mn, so that
after the sort no two people are adjacent either vertically or horizontally. After the
sorting is completed, only the bottom nf rows will contain people, where nf is the
smallest integer satisfying mnf ≥ 2p.

When two (adjacent) pixels swap labels in the sorting algorithm, the people stand-
ing on those pixels may move in the kissing algorithm. Specifically, if exactly one of
the pixels is occupied, then the person standing on that pixel moves onto the adjacent
pixel. On the other hand, if the pixels are both occupied or both unoccupied, then the
pixels switch labels, but there is no movement.
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Second, use the comfortable boustrophedon algorithm on the m× nf grid. Note
that since mnf ≥ 2p, the room is still not comfortable, since a comfortable room has
more occupied pixels than vacant ones. Nonetheless, Lemma 6 still holds. Moreover,
the people are already spread out, meaning that they do not block each other, and the
first step of the comfortable boustrophedon algorithm is unnecessary.

Theorem 4 Assuming there is a person in the first and last column, the minimum
running time for the sparse case is max{m− 2, (p− 1)/5}. The running time of this
algorithm is 2mnf + 3m + o(m), which leads to a 25 + o(1) approximation ratio
for the sparse case.

Proof The people in the first and last column require at least m − 2 steps to kiss.
Furthermore, analogous to Lemma 7, each move can only give d5p/2e kisses since
only p people move at a time. Therefore, the lower bound is max{m−2, (p−1)/5}.

The sorting algorithm discussed in [30] is used to sort the room in 3m + o(m)
time, so all people are in the bottom nf rows. The boustrophedon algorithm requires
no more than mnf cycles, each of which takes two time steps (one for each route).
Therefore, this algorithm takes a total of 2mnf + 3m+ o(m) time.

We examine the approximation ratio in two cases. First, assume m − 2 ≥ (p −
1)/5. Then the lower bound is m and furthermore, mnf < 2p+m < 11m. We can
rewrite the running time in terms of m, then divide by the lower bound m, to get

25m+ o(m)

m
= 25 + o(1).

Similarly, assume (p− 1)/5 ≥ m− 2, so the lower bound is (p− 1)/5. By definition
of nf , mnf < 2p + m. Then our running time can be written in terms of p as
4p+ 3(p− 1)/5 + o(p). Dividing by the lower bound we get

5(p− 1)/5 + 4p+ o(p)

(p− 1)/5
= 25 + o(1).

Therefore, the algorithm has a performance ratio of 25 + o(1).

5 Conclusion

We now bid readers adieu. Rather than giving individual kisses, we take our leave
with phatic comments on open problems and future work (the scholarly equivalent of
the multicast “bye y’all”).

This paper considers kissing only in rectangular rooms. How quickly can a gath-
ering break up in a less austere environment than a rectangle? What about rectilinear
polygons, possibily with holes (to model those parties where people don’t stand on
furniture)?

The boustrophedon algorithm presented here is likely to have better approxima-
tion ratios than this paper proves. Could some nontrivial version of the algorithm
even be optimal? The complexity of the kissing problem remains open for any envi-
ronment.
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