
Minimizing Total Weighted Flow Time with Calibrations
Vincent Chau

Shenzhen Institutes of Advanced Technology

China

vincentchau@siat.ac.cn

Minming Li

Department of Computer Science

City University of Hong Kong, Hong Kong

minming.li@cityu.edu.hk

Samuel McCauley

IT University of Copenhagen

Denmark

samc@itu.dk

Kai Wang

Department of Computer Science

City University of Hong Kong, Hong Kong

kai.wang@my.cityu.edu.hk

ABSTRACT
In sensitive applications, machines need to be periodically cali-

brated to ensure that they run to high standards. Creating an effi-

cient schedule on these machines requires attention to two metrics:

ensuring good throughput of the jobs, and ensuring that not too

much cost is spent on machine calibration.

In this paper we examine flow time as a metric for scheduling

with calibrations.While previous papers guaranteed that jobs would

meet a certain deadline, we relax that constraint to a tradeoff: we

want to balance how long the average job waits with how many

costly calibrations we need to perform.

One advantage of this metric is that it allows for online schedules

(where an algorithm is unaware of a job until it arrives). Thus we

give two types of results. We give an efficient offline algorithm

which gives the optimal schedule on a single machine for a set

of jobs which are known ahead of time. We also give online algo-

rithms which adapt to jobs as they come. Our online algorithms

are constant competitive for unweighted jobs on single or multiple

machines, and constant-competitive for weighted jobs on a single

machine.

1 INTRODUCTION
Modern industrial products like processors and digital cameras

must be manufactured, consistently, to exacting standards. The

machines that make these products are high-performance and high-

maintenance, and perform very precise tasks. As such, they need to

be calibrated before they can be trusted to perform a job. Performing

these calibrations can be very expensive, possibly much more than

the cost of running the machines. The calibrations are only effective

for a set period of time, after which the machine may no longer

The work described in this paper was supported by a grant from Research Grants

Council of the Hong Kong Special Administrative Region, China (Project No. CityU

11268616), by NSFC (No. 61433012, U1435215), by Shenzhen basic research grant

JCYJ20160229195940462, by NSF grants CCF 1617618, IIS 1247726, IIS 1251137,

CNS 1408695, and CCF 1439084, and by Sandia National Laboratories. Work done in

part while Samuel McCauley was visiting the City University of Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA’17, , July 24–26, 2017, Washington, DC, USA.
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4593-4/17/07. . . $15.00

https://doi.org/http://dx.doi.org/10.1145/3087556.3087573

be accurate, and must be (expensively) recalibrated before running

more jobs.

With these costs in mind, recent work has considered scheduling

on machines that need to be calibrated [1, 8, 14]. The goal of algo-

rithms in this framework is to minimize the number of calibrations,

while ensuring that all jobs complete by their deadlines.

This objective function has an interesting property: in most ob-

jective functions (say, minimizing total waiting time, or maximizing

number of jobs completed by a deadline), it is generally profitable

to schedule a job as early as possible. But to minimize calibrations,

the algorithm wants to group jobs together as much as possible,

possibly delaying some jobs considerably. The known algorithms

in this framework are designed to effectively handle this tradeoff:

grouping jobs for more efficient calibrations, while maintaining a

reasonable schedule where jobs are not delayed too long.

The original motivation for scheduling with calibrations came

directly from the Integrated Stockpile Evaluation (ISE) program

to test nuclear weapons periodically. The tests for these weapons

require calibrations that are expensive in a monetary (thought not

necessarily temporal) sense. This motivation is specified further in

[8, 12, 20].

However, this motivation can extend to any context where ma-

chines performing jobs must be calibrated periodically. For example,

high-precision machines require periodic calibration to ensure pre-

cision. Methods for calibrating these machines is itself an area of

research; some examples include [23, 25, 27, 28]. Oftentimes, ma-

chines are no longer considered to be accurately calibrated after

a set period of time. There are many guidelines to determine this

calibration interval, or period of time between calibrations, both

from industry and academia [5, 7, 17, 18, 22, 26].

Calibrations have applications in many areas, including robotics

[9, 13, 21], pharmaceuticals [3, 7, 15], and digital cameras [2, 6, 29].

We formally model calibrations as follows. We must calibrate a
machine before it is able to perform tasks. The machine stays cali-
brated forT ≥ 2 time steps, after which it must remain idle until it

is recalibrated. We refer to theseT time steps following a calibration

as an interval. Calibrating a machine is instantaneous, meaning

that a machine can be recalibrated between two job executions that

run in successive time steps.

We consider the following calibration costs/constraints. In the

online setting (Section 3), each calibration has costG; our objective
is to minimize the sum of the calibration cost and the total flow time.

In the offline setting (Section 4) we have a budget of K calibrations;

https://doi.org/http://dx.doi.org/10.1145/3087556.3087573

the objective is to find the schedule that minimizes total flow time

while only calibrating K times.

While minimizing calibrations, we still want to make sure the

algorithm provides good throughput for the jobs. In this paper,

we want to minimize the average weighted flow time of jobs (the

weighted average of the time each jobwaits, fromwhen it is released

to its completion). Because the number of jobs remains constant,

minimizing the total flow time is equivalent to minimizing the

average; the remainder of the paper only discusses minimizing

total flow time for simplicity.

1.1 Results
Our online algorithms include:

• a 3-competitive algorithm for a single machine with un-

weighted jobs,

• a 12-competitive algorithm for a single machine with

weighted jobs, and

• a 12-competitive algorithm for multiple machines with

unweighted jobs.

We give a lower bound of 2 for the online case.

For the offline case with one machine and weighted jobs, we

give an O (Kn3) dynamic programming algorithm, where n is the

number of jobs and K is the budget for the number of calibrations.

While proving the performance of our algorithmswe give several

structural lemmas for scheduling with calibrations, which may be

useful for future research.

1.2 Related Work
The initial study of scheduling with calibrations was by Bender et al.

[8], who considered minimizing the number of calibrations for jobs

with release times and deadlines. They gave an optimal solution for

a single machine, but were only able to achieve a 2-approximation

for multiple machines (except for some special cases).

Later, Fineman and Sheridan extended these results for jobs

with non-unit processing times [14]. Their work begins with the

observation that minimizing calibrations for jobs with deadlines

generalizes the well-known machine minimization problem—as T
becomes arbitrarily large, the problem is simply to minimize the

number of machines. Somewhat surprisingly, the calibrations for

arbitrary T can be minimized nearly as efficiently: an algorithm

with a given performance bound for machine minimization leads to

an algorithm with similar performance for minimizing calibrations.

More recently, Angel et al. developed dynamic programming

algorithms for further generalizations—where for example there

are multiple kinds of calibrations, or jobs have nonunit processing

times, but are preemptible [1].

Scheduling with calibrations has similarities with some other

well-known scheduling problems, such as minimizing idle peri-

ods [4], and scheduling on cloud-based machines which must be

rented to perform work [19].

2 PRELIMINARIES
Our algorithm must schedule a set of n jobs J on P machines. Each

job j has a release time r j , a weightw j , and a processing time pj = 1

(all jobs have identical, unit length). If a job is scheduled to begin

at tj , it ends at tj + 1, and incurs floww j (tj + 1 − r j).

We assume jobs are indexed in ascending release time order, i.e.

r1 ≤ . . . ≤ rn . Furthermore, we assume that there are at most P
jobs with any given release time without loss of generality (so if

P = 1, we assume that all release times are distinct).
1

We refer to the time period [t , t + 1) as time step t . We assume

all such t , as well as all release times, are integers. We call a time

step idle if no job is being processed during that time step.

A machine can be calibrated at a time step t for costG . We refer

this time step as the calibration time. This calibration happens

instantaneously (the calibration does not prevent the machine from

running jobs during both t and t − 1, if it is otherwise able). We

refer to theT calibrated time steps from t to t +T −1 as an interval;
we say that the interval begins at t and ends at t +T . We call an

interval full if the machine is never idle during the interval, and

non-full otherwise.
A schedule S consists of two parts:

• an assignment of each job j to a time step t and a machine

m, and

• a set of calibration times for each machine.

A correct schedule only assigns one job to each time step on any

machine, and only assigns jobs to calibrated time steps (i.e. no more

than T time steps after the machine was calibrated).

We begin with an observation that if the set of calibration times

is given, we can optimally assign the jobs to machines and time

steps using an efficient, online algorithm.

Observation 2.1. Consider a set of calibration times C, a set of
jobs J , and a number of machines P , we can optimally assign J to
time steps using the following online algorithm:
For each time step t :

(1) Add all jobs arriving at t to the set of waiting jobsW .
(2) For every calibration in C at t , calibrate the next machine in

round-robin order.
(3) For each machine m that is calibrated at t , schedule the

highest-weight job j ∈W onm at time t . If multiple jobs are
tied for heaviest weight, choose the job with earliest release
time. Remove j fromW .

Proof. Let S be the schedule given by this algorithm.

Since the machines are indistinguishable, they can be calibrated

in round-robin orderwithout loss of generality. In the case that there

are more than P calibrations in less thanT time steps, scheduling in

round-robin order maximizes the number of calibrated time steps.

See [8, Lemma 7] for a thorough discussion.

To show that this is an optimal assignment of jobs to times, we

proceed by contradiction. Let t be the first time that S deviates

from every optimal schedule—that is, S schedules j at t , but there
exists an optimal S′ that either schedules j ′ at t with w j , w j′ ,

or chooses not to schedule at all. (Meanwhile, no schedule that

matches S up to t − 1 schedules j at t .)
Consider a schedule S′′ which is the same as S′, except we

swap the times when j and j ′ are scheduled (if S ′ does not schedule
a job, we let w j′ = 0 and swap j ′ with the empty time step at t).
Sincew j , w j′ ,w j′ < w j by definition of S. Then S′′ has smaller

weighted flow time than S′, contradicting its optimality.

1
If more than P jobs have the same release time r , we take the lightest job and increase
its release time by 1. Since at most P jobs can be scheduled at r (and it’s always cheapest
to delay the lightest job), this does not change the optimal cost of the instance.

A similar exchange argument shows that ties can be broken by

release time without loss of generality. □

3 ONLINE ALGORITHMS
In this section we consider an online model for scheduling with

calibrations. In the online setting, an algorithm first learns about

job j at time r j : before the algorithm makes any decisions at time t ,
it receives a list of jobs with r j = t , as well asw j for each such job.

In this section, we limit our calibrations by giving them a (po-

tentially very large) cost that must be balanced with flow. Each

calibration costs G; our goal is to minimize

G · (# calibrations) +
∑
j ∈J

w j (tj + 1 − r j)

where job j begins at time tj and ends at time tj + 1.
Our online algorithms do not make any assumptions on G or

T . In particular, if T < G/T , while our algorithms work as-is, they

can be further simplified while achieving equal or better bounds.

For example, the “immediate calibrations” in Algorithm 1 can be

removed entirely, and the corresponding charging arguments can

be considerably simplified. Similarly, if G/T < 1, our online algo-

rithms all schedule every incoming job immediately, again greatly

simplifying their operation and analysis. We focus on bounds that

apply for allG andT , leaving the analysis of online scheduling with
calibrations under special cases to future work.

We analyze our algorithms using competitive analysis. An al-

gorithm is said to be α-competitive if, for every sufficiently large

input I , the algorithm performs at most an α factor worse than the

optimal offline algorithm on I [10, 24].
We refer to an optimal schedule for an input (J , P) as

OPT(J , P). Our analysis usually considers a fixed input, in which

case we refer to an optimal schedule as OPT.

We begin with a lower bound, which shows that no deterministic

algorithm is better than 2-competitive.

Lemma 3.1. For a single machine and unweighted jobs, any deter-
ministic online algorithm can not be better than (2−o(1))-competitive.
(The o(1) term depends on T and G.)

Proof. The adversary begins by releasing a job at time 0. Our

lower bound considers two cases.

(1) If the online algorithm calibrates at time 0, the adversary

releases another job at time T . Then the online algorithm

incurs calibration cost 2G and flow cost 2, with a total cost

of 2G + 2. Meanwhile, the optimal solution can calibrate

at t = 1, with cost 3 +G. This gives a competitive ratio of

2G+2
G+3 = 2 − 4

G+3 .

(2) If the online algorithm waits (does not calibrate immedi-

ately) then the adversary releases one more job for each

time step from 1 to T − 1. Then the online algorithm has

cost at least 2T + G (since each job has flow at least 2),

whereas an optimal algorithm calibrates at time 0 and has

costT +G . Thus the competitive ratio is
2T+G
T+G = 2 − G

T+G .

Thus, the competitive ratio can be arbitrarily close to 2 for large G,
and T ≫ G. □

3.1 Unweighted Single-Machine Algorithm
In this section, we examine a special case where all jobs are un-

weighted (w j = 1) and must be scheduled on a single machine

(P = 1). We give a 3-competitive algorithm.

The idea of the algorithm is to delay arriving jobs until their

flow is equal to the calibration costG . However, the algorithm has a

maximum number of jobs it can delay, after which it must schedule.

Algorithm 1 Online Unweighted Calibration on One Machine

1: Q ← empty priority queue of jobs, ordered by release time

2: for each time step t do
3: if a job j arrives at time t then
4: Insert j in Q
5: end if
6: if t is not calibrated then
7: f ← flow cost of scheduling all j ∈ Q starting at t + 1
8: if Q contains ≥ G/T jobs or f ≥ G then
9: Calibrate at t
10: else
11: p ← total flow of jobs in the most recent calibration

12: if p < G/2 and a job is released at t then
13: Calibrate at t
14: end if
15: end if
16: end if
17: if Q is not empty and t is calibrated then
18: Remove the earliest-released job j ′ from Q
19: Schedule j ′ at t
20: end if
21: end for

At a high level, Algorithm 1 is similar to known algorithms, like

the optimal solution to the ski rental problem. Both delay until a

large penalty cost is reached (G total flow in this case).

On the other hand, Algorithm 1 is more aggressive at some

points: if there are G/T waiting jobs, or if a job is released after a

calibration in which jobs had total flow less than G/2, it calibrates
regardless of the flow of the current waiting jobs. Interestingly,

although the algorithm appears to schedule somewhat early in

these cases (especially if G/T is small), it is still 3-competitive.

We bound the algorithm’s performance using a charging argu-

ment. To begin, we observe that OPT and Algorithm 1 schedule

jobs in the same order: release time order (this follows from Obser-

vation 2.1). Our proof relies heavily on this structure.

Before proving the competitive ratio, we need a structural lemma

to show that we never double-charge to a calibration. Let Ji be the
set of jobs scheduled in interval i by Algorithm 1. We partition Ji
into two subsets: JEi is the set of jobs scheduled earlier in OPT than

in Algorithm 1 or at the same time in both, and JLi is the set of jobs

scheduled strictly later.

Lemma 3.2. Consider an interval i scheduled by Algorithm 1 start-
ing at time bi with nonempty JEi . Let i

OPT be the earliest interval in
OPT containing a job in Ji . Then for all i ′ > i , iOPT contains no jobs
in Ji′ .

Proof. Since JEi is nonempty, and both OPT and Algorithm 1

schedule in release time order, the first job in Ji must be in JEi . Since

the first job in Ji is scheduled in the first time step of i , iOPT
must

begin no later than i .
Let j ′ be the first job in Ji+1. If j

′
is released after bi +T , it (and

thus all jobs in i ′) must be scheduled after bi +T as well, so it cannot

be scheduled in iOPT
. On the other hand, if j ′ is released before

bi +T , since Algorithm 1 schedules according to Observation 2.1,

there must beT jobs in Ji . Then there areT +1 jobs in Ji ∪ {j
′}; thus

j ′ cannot be scheduled in iOPT
, and neither can any job in Ji′ . □

Theorem 3.3. Algorithm 1 is 3-competitive.

Proof. We use a charging argument for each interval i . We

charge to both costs in OPT: the cost of calibrating intervals, and

the flow of jobs. We argue that each calibration is only charged to

once using Lemma 3.2. The flow of each job is only charged to once

because we only charge to the flow of jobs in Ji .
We break into two cases: in the first, Algorithm 1 calibrated i

due to total flow of G; in the second, the calibration was due to

G/T waiting jobs. If Algorithm 1 calibrated i + 1 because i had flow
at most G/2 (but there were less than G/T waiting jobs with total

flow less than G), we call i + 1 an immediate calibration. If i + 1
is an immediate calibration, we consider the cost of i and i + 1

simultaneously.

Let bi be the time when Algorithm 1 schedules interval i . Let fi
be the total flow of all jobs in i released before bi , and let ei be the
total flow of all jobs in i released on or after bi . We have fi ≤ G by

Algorithm 1, and ei ≤ G since there be at most T incoming jobs,

and each is delayed by |Q | ≤ G/T . As in Lemma 3.2, let iOPT
be

the earliest interval in OPT containing a job in Ji .
Case 1 (Calibrated due to flowG):We split into two subcases.

First, we assume that all jobs in i are scheduled later in OPT than

in Algorithm 1 (JEi is empty). Then we charge to the flow of the

jobs in OPT. Algorithm 1 incurs a cost of G + fi + ei < 2G + ei ,
while OPT incurs a cost of at least f OPT

i + ei ≥ G + ei , leading to
a competitive ratio of 2.

Otherwise, (in the second subcase) JEi is nonempty. We charge

to iOPT
; this charging is unique by Lemma 3.2. Algorithm 1 incurs

a cost ofG + fi + ei < 3G while OPT incurs a calibration cost ofG;
we obtain a competitive ratio of 3.

Case 2 (Calibrated due to G/T waiting jobs): We split into

three subcases.

Case 2a (Nonempty JEi): First, we assume that JEi is nonempty.

If there is no immediate calibration following i , we can charge

to iOPT
. This calibration is only charged to once by Lemma 3.2.

Algorithm 1 has cost G + fi + ei < 3G; we charge to an interval

with calibration cost G.
If fi + ei ≤ G/2, and i + 1 is an immediate calibration, consider

whether interval i+1 has a job scheduled earlier in OPT (i.e. whether

JEi+1 is empty). If interval i+1 has a job scheduled earlier in OPT, we

charge to two intervals in OPT: iOPT
and (i + 1)OPT

(the earliest

interval in OPT containing a job in Ji+1). Lemma 3.2 shows that

these are two different intervals, and that they are not charged to

by any other interval. Intervals i and i + 1 have total cost 2G +
ei + fi + ei+1 + fi+1 < 5G/2; we charge to a calibration cost of 2G
in OPT. Otherwise, if all jobs in Ji+1 are scheduled later in OPT,

Algorithm 1 has cost 5G/2 + ei+1 + fi+1, and OPT has cost at least

G + ei+1 + fi+1 (again charging to iOPT
). In all cases, we achieve a

competitive ratio of 3.

Case 2b (All jobs in Ji delayed at least T): In the second sub-

case, we assume that JEi is empty (all jobs in Ji are scheduled later

in OPT), and all jobs in Ji are scheduled at or after bi +T in OPT.

We charge the cost of Ji (G +ei + fi) to the jobs’ flow in OPT, which

must be at least G + ei + fi .
If Ji+1 is an immediate calibration, all jobs in Ji+1 have flow

cost 1, and must have larger flow cost in OPT. Thus we charge the

calibration and flow costs of Ji and Ji+1 (2G+ei + fi +ei+1+ fi+1) to
their flow costs in OPT, whichmust be at leastG+ei+ fi+ei+1+ fi+1,
giving a competitive ratio of 2.

Case 2c (All jobs delayed; some by a small amount): Finally,
we assume that all jobs in Ji are scheduled later in OPT, but at least

one is scheduled before bi +T . This means that the interval iOPT

must be scheduled before bi +T . This interval contains no jobs in

Ji′ for i
′ > i + 1: if iOPT

contains a job from Ji+1, this follows from
Lemma 3.2; otherwise, all jobs in Ji+1 (and thus Ji′) are scheduled
after iOPT

ends. We charge both i and i + 1 to iOPT
—even if i + 1

is not an immediate calibration.

First, assume that i+1 is an immediate calibration. Then i and i+1
have total cost at most 2G + ei + fi + ei+1 + fi+1 ≤ 5G/2 + |Ji+1 |,
as each job in Ji+1 is scheduled immediately. We charge to cost

G + |Ji+1 | in OPT: G from the calibration cost of iOPT, and |Ji+1 |
since each job in Ji+1 must incur flow cost at least 1 in OPT. This

gives a competitive ratio of 5/2.

If i+1 is not an immediate calibration (and i has total flow at least

G/2), these intervals have total cost at most 2G+ fi +ei + fi+1+ei+1.
Since all jobs in Ji are scheduled later in OPT, we charge to their flow
as well as the calibration of iOPT, so OPT has cost at leastG+ fi +ei .
The ratio between these is minimized when fi + ei is minimized, at

fi +ei = G/2. Then Algorithm 1 has cost 5G/2+ fi+1+ei+1 < 9G/2,
and OPT has cost at least 3G/2, giving a competitive ratio of 3. □

3.2 Weighted Single-Machine Algorithm
When jobs have weights (but must be scheduled on a single ma-

chine), we follow a similar algorithm to the unweighted case. The

main differences are that the algorithm now calibrates if the waiting

jobs have total weightG/T , and the algorithm no longer performs

immediate calibrations (after an interval with flow ≤ G/2).
We assume that all algorithms schedule the heaviest possible job

first, breaking ties by release time (Observation 2.1). Thus, our algo-

rithm and OPT may schedule jobs in a different order, since which

job is scheduled next depends on which time steps are calibrated.

This lack of a common ordering makes charging more difficult.

Our solution to this is twofold. First, in Lemma 3.4, we show that we

can restrict ourselves to algorithms that schedule in order of release

time, losing only a factor 2 in cost. Second, we charge sequences

of full intervals (rather than each interval individually). While it

is difficult to reason about Algorithm 2’s job order within each

interval, we show in Lemmas 3.6 and 3.7 that we can make useful

statements about its behavior between sequences.

Lemma 3.4. If an optimal solution of a given instance has cost
COPT, there exists a solution with all jobs scheduled in order of release
time with cost at most 2COPT.

Algorithm 2 Online Weighted Calibration on One Machine

1: Q ← empty priority queue of jobs, ordered by release time

2: for each time step t do
3: if a job j arrives at time t then
4: Insert j in Q
5: end if
6: if t is not calibrated then
7: f ← flow cost of scheduling all j ∈ Q starting at t + 1
8: if

∑
j ∈Q w j ≥ G/T or |Q | = T or f ≥ G then

9: Calibrate at t
10: end if
11: end if
12: if Q is not empty and t is calibrated then
13: Extract the job j ′ with smallest weight from Q
14: Schedule j ′ at t
15: end if
16: end for

Proof. We show how to transform an optimal schedule (with

C calibrations) into a new schedule where jobs are in release time

order. This new schedule will schedule all jobs no later than they

were in the original schedule, so the flow cost will be smaller. Fur-

thermore, the new schedule will have no more than 2C calibrations.

Thus the total cost of the new schedule is at most 2COPT.

Consider each job in the schedule, in order from latest to earliest

release time. We maintain the invariant that after considering a job

j, it is scheduled at a time tj such that tj ≥ r j , and all jobs with

r j′ > r j have tj′ > tj . At intermediate points while constructing this

schedule, several jobs may be scheduled at the same time. However,

we also maintain that after considering job j, no two jobs with

release times at least r j are scheduled at the same time.

For each job j, move j before all jobs j ′ with r ′j > r j . In other

words, move j to the time step immediately before the job with the

next-largest release time is scheduled (even if there is a job already

scheduled at this time step).

We now show that these invariants are maintained. Each job j
is scheduled before all jobs with later release times by definition.

To show tj ≥ r j , we must have all jobs with r j′ > r j scheduled
at tj′ ≥ r j′ ≥ r j + 1; thus, r j is a time step before all jobs with

later release times are scheduled, so it satisfies the requirement for

tj . Since tj is the maximum time step satisfying the requirement,

tj ≥ r j . Finally, no job with release time larger than r j can be

scheduled at tj ; thus j is not scheduled at the same time as a job

with larger release time. Since the invariant was maintained for all

jobs with larger release time, the invariant is maintained.

Now we show that there are no more than 2C calibrations. Each

time we add a job, we add one new time step—this time step is

already calibrated, or is adjacent to a sequence of newly-filled time

steps, the last of which is adjacent to a calibrated time step.

Consider a sequence of calibrated time steps in the new sched-

ule. All jobs from this sequence must have come from intervals

contained in this sequence, as a job j being pushed back never

“skips over” an uncalibrated time step. As j is pushed back, it may

empty some slots, but we assume that they remain calibrated in

the new schedule. Thus, all jobs from this calibrated sequence must

come from an interval in this sequence. Let p be the number of

previously-uncalibrated slots in this sequence. Then the number of

extra calibrations necessary is ⌈p/T ⌉. Furthermore, the number of

calibrations previously in this interval was at least ⌈p/T ⌉. Thus the
number of calibrations for each sequence is at most doubled. Thus

the total number of calibrations is no more than 2C . □

In some circumstances we want to charge the online algorithm’s

flow cost to OPT’s calibration cost (like we did for the cases with

nonempty JE in the proof of Theorem 3.3). But if jobs have ex-

tremely large weights, our intervals can have correspondingly large

flow, even if they are scheduled at release time. Similarly, Algo-

rithm 2 calibrates immediately if the waiting jobs have total weight

more than G/T ; however, heavy incoming jobs can cause a much

larger total queue weight. Lemma 3.5 helps deal with these issues

by showing that if we ignore the unavoidable flow cost of w j for

every job, we can bound the total flow of jobs in an interval.

Lemma 3.5. Let Ji be the set of jobs scheduled in interval i by
Algorithm 2, where each j ∈ Ji is processed at time tj .2 Then∑
j ∈Ji w j (tj − r j) < 2G.

Proof. Let i begin at bi . The total flow cost of jobs in interval i
is the sum of three terms:

(1) the flow incurred by jobs if they had been scheduled at bi
(the value f in Algorithm 2 is this flow at bi + 1),

(2) the flow of incoming jobs scheduled immediately, and

(3) for each time step t ,w j flow for each unfinished j ∈ Ji .
Term 1 is at most G by Algorithm 2, and term 2 does not count

towards our cost (since these jobs are scheduled at their release

time). Thus, our goal is to show that the total cost of term 3 is at

most G +
∑
j ∈Ji w j .

Let Qt denote the queue of waiting jobs at time bi + t , not
including the job scheduled at bi + t . Then we want to show∑T−1
t=0
∑
j ∈Qt w j ≤ G .

First we bound the cost of Q0. At the time step before bi , Al-
gorithm 2 did not schedule an interval, so the total weight of all

waiting jobs was less thanG/T . At bi , any job released at time bi
is added to the queue, and the largest job in Q0 is removed; thus∑
j ∈Q0

w j < G/T .
Now we show that

∑
j ∈Qi−1 w j ≤

∑
j ∈Qi w j . At each time step,

a job enters the queue, and a job is popped off the queue to be

scheduled. If no job arrives, or if the arriving job does not have

the largest weight in the queue, this is a net decrease in weight

and we have Qi < Qi−1. If the arriving job has the largest weight

in the queue, it is scheduled immediately, and Qi = Qi−1. Thus,∑T−1
t=0
∑
j ∈Qt w j ≤

∑T−1
t=0
∑
j ∈Q0

w j < G . □

As mentioned before, our charging argument considers groups

of consecutive intervals. In particular, we partition the schedule of

Algorithm 2 into maximal groups of consecutive intervals, called

sequences, such that all but the last interval in each sequence is

full.
3
This partitioning is unique, since the boundaries between

sequences are exactly the non-full intervals. We say a sequence

ends at eI , the final time step of its last interval, and begins at
bI , the time step immediately after the previous sequence ends

2
Thus j finishes at tj + 1 and incurs floww j (tj + 1 − r j).

3
The last interval may be full if it is the last interval in the entire schedule.

(bI = 0 for the first sequence). Observation 2.1 implies that all jobs

scheduled within each sequence I are released on or after bI .
Let OPTr be the optimal algorithm that schedules all jobs in

order of release time.

The following lemma is the basis of our charging argument.

Essentially, we show that for any sequence I , since most of the

intervals are full, OPTr must calibrate all but the last interval earlier

than in Algorithm 2.

Lemma 3.6. For every sequence I , for every k < |I |, there are at
least k intervals scheduled by OPTr that:

• end after bI , but
• begin no later than the kth interval in I .

Proof. Assume the contrary: let kOPT
be the kth interval sched-

uled by OPTr after bI , and k
I
be the kth interval in I , with kOPT

scheduled after k I . Since k I is full, there were at least kT jobs re-

leased between bI and the time k I ends. In particular, since OPTr
schedules in release time order, all jobs in kOPT

were released by

the time k I ends. This means that kOPT
can be scheduled one time

step earlier, improving its flow time and contradicting the definition

of OPTr . □

Our final structural lemma shows that we can, in some cases,

bound the flow of jobs scheduled later in OPTr than in Algorithm 2

for a given sequence. The assumptions in the lemma are specific

because they closely match our charging scheme.

Lemma 3.7. Let I be a sequence of intervals scheduled by Algo-
rithm 2 with jobs JI , and let ℓ be the last interval in I . Let ℓOPT be
the |I |th interval in OPTr containing jobs in JI . Assume ℓOPT begins
after ℓ ends. Let f q

ℓ
be the total flow of the jobs in ℓ if no new jobs

were incoming (corresponding to the value f in Algorithm 2 one time
step before ℓ is scheduled), and let fℓ be the actual flow incurred by
all jobs in ℓ. Then the total flow incurred by OPTr of all jobs in JI
scheduled in ℓOPT and later intervals is at least fℓ − f

q
ℓ
.

Proof. Deferred to the full version for space. □

Nowwe are ready to prove the performance of our algorithm.We

show that Algorithm 2 is 6-competitive with OPTr , which implies

by Lemma 3.4 that it is 12-competitive with OPT.

Theorem 3.8. Algorithm 2 is 12-competitive.

Proof. Consider a sequence of intervals I . We charge the last

unit of flow of all jobs scheduled by Algorithm 2 to their last unit

of flow in OPTr .

We charge the remainder of the cost of the kth interval of I to
the kth interval of OPTr ending after bI , for all k < I . In particular,

we charge to half its calibration cost,G/2. We only charge to half

the cost because we will charge to some intervals twice.

For the last interval in I , let ℓOPT
be the |I |th interval containing

jobs in JI in OPTr .

(1) If ℓOPT
begins after eI and is charged to by two later se-

quences, we charge to the flow of all jobs in JI scheduled
by OPTr in ℓ

OPT
or later.

(2) Otherwise, if |I | = 1 and ℓOPT
begins after bI , we charge

to half the calibration cost of ℓOPT
, and the flow cost of

all jobs in JI scheduled by OPTr in ℓ
OPT

or later.

(3) Otherwise, we charge to one time step of flow for each

j ∈ Ji , plus half the calibration cost of ℓOPT
.

First, we show that we charge to any interval i in OPTr at most

twice. By Lemma 3.6, i cannot be charged to by two intervals from

the same sequence I . Since all jobs in a sequence I are released after
I begins, and all but the last interval charge to earlier intervals by

Lemma 3.6, if an interval is charged to by two different sequences,

it must be charged to by the |I |th interval for some I . Then by the

definition of Case 1, it can only be charged to twice.

We now examine the total costs of an interval i with jobs Ji , in a

sequence I with jobs JI . We split into two cases.

Case 1 (i charges to a calibration cost in OPTr):We charge

the flow incurred during the time step inwhich each job is scheduled

to its flow in OPTr , and the remainder of the cost of i to the kth
interval in OPTr containing jobs from JI . By Lemma 3.5 we charge

a cost of 3G +
∑
j ∈Ji w j to a cost in OPT of at leastG/2 +

∑
j ∈Ji w j ;

this leads to a competitive ratio of 6.

Case 2 (i charges to flow): If i charges to flow, by Case 1, there
are two intervals i1, i2 that charge to the calibration cost of an

interval ℓOPT
containing jobs from JI . If |I | > 1, we examine the

total cost of i , i1, and i2, and lower bound the cost they charge to.

Otherwise, if |I | = 1, we charge the cost of i directly.
First, for this argument to be correct, we need that for every

ℓOPT
, there is only one interval in a sequence of size greater than

one that charges to flow in ℓOPT
(since we charge to the calibration

cost of ℓOPT
when |I | > 1). This follows from Lemma 3.6.

Now, consider the case where |I | = 1. The total cost is G + fi ,
where fi is the flow in I . Let f OPT

i be the flow of the jobs in JI
incurred in OPTr . Since all jobs in i (and thus all jobs in JI) are
scheduled after ℓOPT

, and ℓOPT
begins after eI , they are scheduled

beginning at leastT time steps later in OPTr . Immediately, we have

f OPT
i > fi . If i was scheduled due to flow G we have f OPT

i > G
by definition; if i was scheduled due toG/T weight of waiting jobs,

each waits forT additional steps, and again f OPT
i > G . ThusG + fi

is at most twice f OPT
i .

Now, consider |I | > 1. Let fi be the flow of all jobs in i , and f
q
i

be the flow of all jobs in i incurred if there had been no incoming

jobs after i began (see Lemma 3.7). Then by Lemma 3.7, i charges
to a flow of at least fi − f

q
i . Either i1 or i2 must charge to ℓOPT

using Case 2; without loss of generality we call this i1. Then i1 is
in a sequence of size 1. In particular, all jobs scheduled in i1 are
scheduled in ℓOPT

or later and must incur at least the same flow.

Then the total cost of i , i1, and i2 isG + fi +G + fi1 +G + fi2 ≤
5G + fi + fi1 +

∑
j ∈Ji

2

w j by Lemma 3.5. We charge to a cost of

G + (fi − f
q
i)+ fi1 +

∑
j ∈Ji

2

w j . Since f
q
i ≤ G , our competitive ratio

is

6G + (fi − f
q
i) + fi1 +

∑
j ∈Ji

2

w j

G + (fi − f
q
i) + fi1 +

∑
j ∈Ji

2

w j
≤ 6. □

3.3 Multiple Machines
We give a competitive online algorithm when jobs can be assigned

to multiple machines, and jobs do not have weights.

When there are multiple machines, charging becomes infeasi-

ble, as small perturbations in the intervals can lead to significant

changes in which jobs belong to which interval (if they are sched-

uled in order of release time).

Instead, we use another method: the primal-dual approach. This

allows us to use linear-programming-based techniques to derive

a lower bound on the cost of OPT directly, without charging to

intervals containing specific jobs. On the other hand, this seems to

come at some loss of efficiency: we only show that our algorithm

for multiple machines is 12-competitive.

Our algorithm is an extension of Algorithm 2. We wait until

there areG/T waiting jobs or the jobs have total flowG to calibrate.

Then, we schedule jobs in order of release time, starting with the

machine with smallest index first.

With multiple machines, we need to be careful how we define

waiting jobs. In particular, once we calibrate, we want the jobs

we will schedule in that interval to no longer count as waiting

jobs when deciding if we should calibrate further. Thus, when we

calibrate, we assign jobs to the intervals immediately. This means

that the guarantee that jobs are scheduled in order of release time

does not hold across machines for this algorithm.

In particular, Algorithm 3 schedules jobs explicitly, rather than

using the schedule in Observation 2.1. While we are still able to

prove a constant approximation ratio, in practice one would al-

most certainly only use Algorithm 3 to determine calibration times,

and use Observation 2.1 for the actual assignments. In particular,

Algorithm 3 may schedule jobs late in an interval (in Step 13), incur-

ring extra flow over Observation 2.1’s schedule if a largely-empty

interval is scheduled concurrently.

Algorithm3Online Unweighted Calibration onMultipleMachines

1: Q ← empty priority queue of jobs, ordered by release time

2: for each time step t do
3: for all jobs j arriving at time t do
4: Insert j in Q
5: end for
6: for all calibrated machinesm idle at t do
7: Remove the earliest-released job j from Q
8: Schedule j onm at t
9: end for
10: f ← flow cost of scheduling all jobs in Q starting at t + 1
11: while Q contains ≥ G/T jobs or f ≥ G do
12: Calibrate at t on the next machine in round robin order

13: Schedule up to G/T jobs from Q in this interval in re-

lease time order

14: end while
15: end for

We begin with several simple observations about the flow costs

of each interval scheduled by Algorithm 3.

Observation 3.9. Let i be an interval scheduled on machinem at
time step bi by Algorithm 3. Then

• every job in i incurs flow at most 2G/T after bi ,
• the total flow of all jobs in i is at most 3G, and
• if Algorithm 3 schedules i due to flow (f ≥ G in Step 11), the

total flow of jobs in i is at least G −G/T .

Proof. Let j ∈ Ji be in Q at bi or a later time. Since jobs are

scheduled in release time order, and all but the first G/T time steps

of i are free, j is scheduled at most G/T + |Q | ≤ 2G/T time steps

after bi .
The total flow of all jobs in i is at most G up to time bi (since all

jobs incurring flow before bi must be released before bi and thus

must be in Q at bi). There are at most T jobs in i , each of which

incurs flow at most 2G/T after bi , giving a total flow of at most 3G .
Let f be the total flow if the jobs were scheduled at bi + 1 (as

defined in Step 10 of Algorithm 3), and fi be the actual flow of all

jobs in I , scheduled beginning at bi . Since only jobs inQ are waiting

at time bi (by definition), f ≤ fi + |Q |. Since f ≥ G and |Q | < G/T ,
fi ≥ G −G/T . □

In Figure 1 we give the linear program we use to analyze the

algorithm. By observation, any schedule S with total cost C cor-

responds to a solution to the linear program with cost C . We use

the dual of the linear program to lower bound this cost, thus lower

bounding the cost of any schedule S.

In particular, the weak duality theorem guarantees that any
solution to the primal LP has at least the cost of any solution to the

dual LP. Our proof shows that at every time step, the cost incurred

by Algorithm 3 can be offset by a cost increase in the dual LP, and

thus a cost increase in OPT. See [11, 16] for further discussion of

this technique.

We have four constraints in the linear program. The first ensures

that flow is high until we fully calibrate. The second ensures that

the flow being incurred at a given time step can only decrease

by 1 from the previous time step (per machine), and only during

calibrated time steps. The third ensures that each job j is assigned
to at least one machinem. The fourth makes sure that every job

incurs flow cost of at least 1. The first and second constraints seem

slightly redundant; however, both are necessary for our proof.

These following variable assignments show that any schedule

for an online calibrations instance satisfies these constraints (and

help explain the intuition behind them). Let ft, j = 1 if job j incurs
flow at time step t . Let ct,m = 1 if an interval begins on machinem
at time t . Finally, let aj,m = 1 if job j is scheduled on machinem.

All variables are 0 in all other cases.

Primal:

minimize

∑∑
ft, j +G

∑
ct,m

ft, j +
t∑

t ′=r j−T
ct ′,m − aj,m ≥ 0 ∀j, t ≥ r j ,m

∑
r j<t

(ft, j − ft−1, j) +
∑
m

t∑
t ′=t−T

ct ′,m ≥ 0 ∀t∑
m

aj,m ≥ 1 ∀j

fr j , j = 1 ∀j

Figure 1: A linear program for scheduling with calibrations.

Taking the dual, we obtain the LP given in Figure 2. All variables

are required to be nonnegative in the primal. In the dual, we have

xt, j ≥ 0, yt ≥ 0, vj ≥ 0, and zj unbounded.

Theorem 3.10. Algorithm 3 is 12-competitive.

Dual:

maximize

∑
zj +
∑

vj∑
p

xt, j,m − yt+1 + zj ≤ 1 ∀t , j with t = r j

∑
p

xt, j,m + yt − yt+1 ≤ 1 ∀t , j with t , r j

∑
j |r j ≤t+T

∑
t ′>t

xt ′, j,m +
t+T∑
t ′=t

yt ≤ G ∀t ,m∑
t>r j

−xt, j,m +vj ≤ 0 ∀j,m

Figure 2: The dual of the linear program given in Figure 1.

Proof. As mentioned earlier, we use the primal dual technique.

We set the variables every time Algorithm 3 calibrates (or, in some

cases, only after Algorithm 3 calibrates twice. This is similar to

when two intervals are charged simultaneously in the proof of

Theorem 3.3). In each case, we show that the increase in the dual

objective function is at least 1/12 the cost incurred by Algorithm 3.

This shows that Algorithm 3 is 12-competitive.

We let vj = maxm
∑
t xt, j,m . Intuitively, we use xt, j,m to keep

track of the flow of job j at time t on machinem. Since Algorithm 3

only assigns flow to one machine,vj can store the total flow of job j .
We set yt = G/2T for all t , and zj = G/2T for all j. These variables
help contribute to cost when there are a large number of jobs that

may not have much flow (i.e. Algorithm 3 calibrates due to G/T
waiting jobs).

We examine each interval i one by one and find the increase

in the dual LP objective after the interval is scheduled. Let bi be
the time when interval i is scheduled, letmi be the machine i is
scheduled on, and let Ji be the jobs scheduled in i . Our argument

is split into cases based on why the algorithm decided to schedule

the jobs.

Case 1 (Total flow G): In this case, we calibrate because the

waiting jobs have total flow at least G. We split into two subcases.

First, assume that there is a job which is released before i ends, and
scheduled onmi , but not scheduled in i . Then there areT total jobs

scheduled during i . We keep xt, j,m = 0 for all t ,m for all j ∈ Ji , but
recall that zj = G/2T for all j ∈ Ji . This gives a total dual cost of
G/2; since i has total cost at most 4G by Observation 3.9, this gives

a competitive ratio of 8.

Nowwe can assume that all jobs scheduled onmi with r j < bi+T
are scheduled in i or an earlier interval.

First, we deal with the corner case T = 1. Then i has only one

job j. We charge to zj = G/2, again giving a competitive ratio of 8.

Otherwise, T ≥ 2. Note that all jobs on each machine are sched-

uled in order of release time. For all t ≤ bi and for all jobs j ∈ Ji , let
xt, j,mi = 1/2 if job j is waiting at time t , and xt, j,m = 0 otherwise.

Since the jobs incur at most G flow before bi , the sum of these

x j,t,m is at most G/2. Therefore, the third condition is satisfied for

all times t ,m.

Let fj be the total flow of job j . By Observation 3.9, fj ≤ 2G/T +∑
t 2xt, j,m . Algorithm 3 incurs cost G +

∑
j ∈Ji fj .

The dual cost increases by

∑
j ∈Ji

(
G/2T +

∑
t xt, j,m

)
≥∑

j ∈Ji fj/4. By Observation 3.9, the jobs in Ji have total flow at

least G −G/T ≥ G/2, so
∑
j ∈Ji fj/6 ≥ G/12.

Thus the competitive ratio is

G +
∑
j ∈Ji fj∑

j ∈Ji fj/4
≤

G +
∑
j ∈Ji fj

G/12 +
∑
j ∈Ji fj/12

≤ 12.

Case 2 (G/T waiting jobs): We consider intervals i and i + 1.

These two intervals have cost at most 6G. We show that the dual

increases in cost by at leastG/2. We set x j,t,mi = c for all waiting

jobs j ∈ Ji ,
4
for a constant c defined momentarily. Otherwise,

x j,t,m = 0 for all t ,m for all j ∈ Ji+1 and all other j ∈ Ji .
If there are exactly G/T jobs scheduled in i with release time at

most bi , we let c = 1/2. If there are more than G/T jobs remaining

(e.g. if G/T is not an integer or many jobs are released at bi), we
reduce c until cT (# waiting jobs) = G/2.

The third condition is satisfied since only the waiting jobs have

xt, j,mi > 0 for bi ≤ t < bi +T ; by definition of c the sum of these

terms is exactly G/2.
By Observation 3.9, Algorithm 3 incurs cost at most 4G +∑
j ∈Ji 2G/T +

∑
j ∈Ji+1 2G/T , while the dual increases by at least

G/2 +
∑
j ∈Ji G/2T +

∑
j ∈Ji+1 G/2T . This gives a competitive ratio

of 8. □

4 OFFLINE SCHEDULING
In this section, rather than a calibration cost, we have a calibration

budget K . Our goal is to minimize the flow time while calibrating

at most K times on P = 1 machine.

This is a generalization of the online model, as we can use a

binary search to find the optimal calibration budget (between 1 and

n calibrations) for a given calibration cost G.5

As before, we consider unit jobs. Our offline solution allows

arbitrary weights for each job, and guarantees an optimal solution

on one machine.

Lemma 4.1. Let j be a job scheduled at tj in interval i starting at
bi . Then in any optimal schedule, either:

• j starts at its release time (tj = r j), or
• there is no idle time between bi and tj .

Proof. By contradiction. Let j be the first contradicting job in
some optimal schedule; in other words, j is the earliest job scheduled
such that tj , r j , and there exists an empty time step t between bi
and tj .

If r j does not have a job scheduled, we can schedule j at r j ,
strictly improving the flow time of the schedule and achieving a

contradiction.

Otherwise, let j ′ be the job scheduled at r j . Since all release

times are distinct, r j′ < r j ; since we assumed j is the earliest job
violating the lemma, we must have t > r j . Then we can schedule

j at t , strictly improving the flow time of the schedule; thus the

schedule cannot be optimal. □

4
By “waiting jobs” we mean the jobs with r j ≤ t < tj .

5
One may hope for an online result using a calibration budget as well. However, a

calibration budget leaves an online algorithm completely helpless: whether it should

spend a calibration now, or wait until more jobs have accumulated, depends entirely

on the future schedule.

Lemma 4.2. There exists an optimal schedule such that the last
time step of each interval i is a job that is scheduled at its release time.

Proof. Without loss of generality we assume the last time step

of i is not idle (otherwise, we move the calibration back in time

until a job is scheduled in the last time step).

First, assume that i is non-full. Then by Lemma 4.1, the last job

in j (indeed, all jobs scheduled after an empty time step in i) must

be scheduled at its release time.

Otherwise, assume that i is full. For a contradiction, assume that

the last job in i is not scheduled at its release time. Let t be the latest
release time of any job in i . If t = bi +T , the job released at t must

be scheduled at t and we are done. Otherwise, push i back so that

it ends immediately after t (in other words, bi ← t + 1 −T). Since
all jobs have distinct release times, all jobs previously in i can still

be scheduled in i; if we schedule using Observation 2.1 (without

loss of generality), each job is scheduled no later than before. This

leads to a schedule with better flow, contradicting the optimality of

the original schedule. □

By Lemma 4.1, we have the following corollary.

Corollary 4.3. In any optimal schedule, for any non-full interval
i , any job that is released before the end of interval i must be scheduled
in an interval which starts no later than i .

Proof. Let t be the first idle time step in interval i . No job is

released at time t (otherwise time step t will not be idle). For jobs
released before t , they can not be scheduled in a time step after t
since t is idle and calibrated. For jobs released after t and before

the end of interval i , they should be scheduled at its release time

according to Lemma 4.1, as time step t is idle. □

With these lemmas in mind, our offline schedule is built around

critical jobs.

Definition 4.4. Given a feasible schedule, job j is critical if it is
scheduled at its release time and any job that is released before r j
is scheduled before r j .

The remainder of the proofs in this section are deferred to the

full version for space.

4.1 The Offline Algorithm
By Corollary 4.3, in an optimal schedule, the last job of each non-full

interval must be a critical job. We consider two adjacent non-full

intervals such that all intervals between them (maybe zero) are full,

let jobs j and j ′, j < j ′ be the last job of the two non-full intervals

respectively, then there must be a group of

⌈
j′−j
T

⌉
intervals which

only schedule jobs {j + 1, ..., j ′}. Moreover, there is at most one

non-full interval in the group, and it must be the last interval in

the group.
6
Then, we propose a dynamic programming approach

to find such groups of intervals and obtain an optimal schedule.

We denote for each job j ∈ J a distinct rank µ j ∈ {1, 2, ...,n}
which corresponds to the ascending order of their weights (break

ties by ranking the job of latest release time first). Let J (u,v, µ) =
{j | ru ≤ r j ≤ rv , µ j > µ} be the set of jobs that are released during

6
These groups are similar to the sequences defined in Section 3.2, but are used signifi-

cantly differently.

[ru , rv + 1) with ranks higher than µ. We define f (u,v, µ) as the
minimum total weighted completion time of jobs in J (u,v, µ) with a
group of exactly ⌈|J (u,v, µ) |/T ⌉ intervals such that the last interval

starts at rv + 1 −T and all intervals in the group are full (except

the last one in the case that |J (u,v, µ) | is not divisible by T). We

define F (k,v) as the minimum total weighted completion time of

jobs {1, ...,v} with at most k calibrations.

Proposition 1.

F (k,v) = min

u≤v

{
F
(
k −

⌈v − u + 1
T

⌉
,u − 1

)
+ f (u,v, 0)

}
We set F (k,v) ← +∞ if kT < v , and F (k,v) ← 0 if v = 0.

We maintain the invariant that job v is critical and test for each

job u before or equal to job v whether job u − 1 is a critical job.

Then, we use another dynamic program to calculate the minimum

total weighted completion time f (u,v, 0) of jobs {u, ...,v}.

u − 1

F
(
k −

⌈
v−u+1

T

⌉
,u − 1

)
f (u,v, 0)

v

group

F (k,v)

...

Figure 3: Illustration of Proposition 1

In the following, we show how to compute f (u,v, µ) for jobs
J (u,v, µ) with a budget of ⌈|J (u,v, µ) |/T ⌉ calibrations.

Let i be the last interval, and bi = rv + 1 −T be the time when

interval i starts (it ends at rv + 1 = bi +T). We look for the optimal

schedule such that, except for i , all other intervals are full. Without

loss of generality, we assume that no two intervals overlap with

each other.
7

Definition 4.5. Given u,v, µ such that J (u,v, µ) , ∅:
• let e = argmin

j ∈J (u,v,µ)
µ j be the job of smallest rank,

• let Ψ = {j | |J (u, j, µ) | mod T ≡ 0, j ∈ J (u,v − 1, µ)} be
the set of jobs j such that the number of jobs J (u, j, µ) is a
multiple of T ,

• let jℓ = argmaxj ∈Ψ r j be the job with latest release time

rℓ of jobs Ψ if Ψ , ∅, and
• let s = min {h | h ≡ |{j | r j < rv + 1−T +h, j ∈ J (u,v, µ)}|

mod T }.

Lemma 4.6. As defined above, s is the smallest value such that
the machine is completely busy during [bi ,bi + s), and every job is
scheduled at its release time during [bi + s,bi +T).

We focus on where we should schedule the job e of smallest

rank. Suppose in the optimal schedule job e is scheduled in interval

i ′ = [bi′ ,bi′ +T) at time step te . Firstly, no job except e could be

released at te , otherwise a schedule with better or equal cost can be

7
This can clearly be done by perturbing intervals. We do need to be slightly careful to

maintain Lemma 4.2; in particular, if two intervals overlap, we should perturb them by

scheduling the first one earlier rather than the second one later.

obtained by swapping the schedule of that job and job e , since job
e has the smallest weight. Secondly, jobs that are released before te
must not be scheduled after te . Assume by contradiction that such

job i exists. Then a better schedule can be obtained by swapping

the schedule of job i and job e . Therefore, any job that is scheduled

in interval [te + 1,bi′ + T) must be scheduled at its release time.

Consequently, the last job of i ′ must be a critical job.

Proposition 2. We set f (u,v, µ) ← 0 if J (u,v, µ) = ∅; and
f (u,v, µ) ← ∞ if Ψ , ∅ and bi ≤ rℓ .

Otherwise, f (u,v, µ) =

min

f (u,v, µe) +we (re + 1) if re ≥ Ibeдin + s
f (u,v, µe) +we (rv + 1 −T + s)

if re < Ibeдin + s, s > 0

min

j ∈Ψ, r j ≥re
f (u, j, µ) + f (j + 1,v, µ) if Ψ , ∅

ru r jre rb rv

e j vrv + 1 −T
s

Figure 4: Illustration of Proposition 2

Theorem 4.7. This dynamic programming algorithm requires
O (Kn3) time.

5 CONCLUSION
This work is the first to our knowledge to study online scheduling

with calibrations, and the first to give algorithms that allow for

a tradeoff between throughput and calibrations. However, open

problems remain.Wewould like to tighten the bounds for the single-

machine unweighted case: the online algorithm is 3-competitive,

while the lower bound is only 2. Can this be tightened?

An interesting open problem is to fully explore the connection

with machine minimization. Fineman and Sheridan showed that the

problems are essentially equivalent in the offline case with resource

augmentation [14]; can a similar statement be made about online

scheduling?

REFERENCES
[1] Eric Angel, Evripidis Bampis, Vincent Chau, and Vassilis Zissimopoulos. 2017.

On the Complexity of Minimizing the Total Calibration Cost. In Proceedings of
the 11th International Workshop on Frontiers in Algorithmics (FAW ’17) (LNCS),
Vol. 10336. Springer, Heidelberg. To appear.

[2] Richard Baer. 2005. Self-calibrating and/or self-testing camera module. (Sept. 30

2005). US Patent App. 11/239,851.

[3] Surendra K Bansal, Thomas Layloff, Ernest D Bush, Marta Hamilton, Edward A

Hankinson, John S Landy, Stephen Lowes, Moheb M Nasr, Paul A St Jean, and

Vinod P Shah. 2004. Qualification of analytical instruments for use in the pharma-

ceutical industry: A scientific approach. Aaps Pharmscitech 5, 1 (2004), 151–158.

[4] Philippe Baptiste. 2006. Scheduling unit tasks to minimize the number of idle

periods: a polynomial time algorithm for offline dynamic power management.

In Proceedings of the 17th. ACM-SIAM Symposium on Discrete Algorithms (SODA
’06). SIAM, Philadelphia, 364–367.

[5] HP Barringer. 1995. Cost Effective Calibration Intervals Using Weibull Analysis.

In Proceedings of the 11th. Quality Congress. American Society For Quality Control,

Milwaukee, 1026–1038.

[6] Andrew Barton-Sweeney, Dimitrios Lymberopoulos, and Andreas Savvides. 2006.

Sensor localization and camera calibration in distributed camera sensor networks.

In Proceedings of the 3rd. International Conference on Broadband Communications,
Networks and Systems (BROADNETS ’06). IEEE, Piscataway, 1–10.

[7] Beamex. 2007. Traceable and Efficient Calibrations in the Process Indus-

try. (October 2007). https://www.beamex.com/wp-content/uploads/2016/12/

CalibrationWorld_2007-03-ENG.pdf.

[8] Michael A. Bender, David P. Bunde, Vitus J. Leung, Samuel McCauley, and Cyn-

thia A. Phillips. 2013. Efficient Scheduling to Minimize Calibrations. In Proceed-
ings of the 25th. ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’13). ACM Press, New York, NY, 280–287.

[9] Rolf Bernhardt and S Albright. 1993. Robot calibration. Springer Science &

Business Media, Heidelberg.

[10] Allan Borodin and Ran El-Yaniv. 2005. Online computation and competitive
analysis. Cambridge University Press, Cambridge.

[11] Niv Buchbinder and Joseph Naor. 2009. The design of competitive online al-

gorithms via a primal-dual approach. Foundations and Trends in Theoretical
Computer Science 3, 2–3 (2009), 93–263.

[12] Chris Burroughs. 2006. New Integrated Stockpile Evaluation program to better

ensure weapons stockpile Safety, Security, Reliability. http://www.sandia.gov/

LabNews/060331.html. (March 2006). Online; posted March 2006.

[13] Roger C Evans, John E Griffith, David D Grossman, Myron M Kutcher, and

Peter MWill. 1982. Method and Apparatus for Calibrating a Robot to Compensate

for Inaccuracy of the Robot. (Dec. 7 1982). US Patent 4,362,977.

[14] Jeremy T Fineman and Brendan Sheridan. 2015. Scheduling Non-Unit Jobs to

Minimize Calibrations. In Proceedings of the 27th. ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’15). ACM Press, New York, NY, 161–170.

[15] M Forina, MC Casolino, and C De la Pezuela Martínez. 1998. Multivariate

calibration: applications to pharmaceutical analysis. Journal of pharmaceutical
and biomedical analysis 18, 1 (1998), 21–33.

[16] Michel X Goemans and David P Williamson. 1997. The primal-dual method for
approximation algorithms and its application to network design problems. PWS

Publishing Co, Boston. 144–191 pages.

[17] James R. Lakin. 2014. Establishing Calibration Intervals, How Often Should One

Calibrate? http://www.inspec-inc.com/home/company/blog/inspec-insights/

2014/09/30/establishing-calibration-intervals-how-often-should-one-calibrate.

(Sep 2014). Online; posted 30 September 2014.

[18] Kuo-Huang Lin and Bin-Da Liu. 2005. A gray system modeling approach to the

prediction of calibration intervals. IEEE Transactions on Instrumentation and
Measurement 54, 1 (2005), 297–304.

[19] Alexander Mäcker, Manuel Malatyali, Friedhelm Meyer auf der Heide, and Sören

Riechers. 2016. Cost-efficient Scheduling on Machines from the Cloud. In Pro-
ceedings of the 10th. International Conference on Combinatorial Optimization and
Applications (COCOA ’16). Springer, Heidelberg, 578–592.

[20] National Nuclear Safety Administration. 2014. Office of Test and

Evaluation. http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/

stockpilestewardship/testcapabilitiesand-eval. (September 2014). Online; posted

30 September 2014.

[21] Hoai-Nhan Nguyen, Jian Zhou, and Hee-Jun Kang. 2013. A new full pose mea-

surement method for robot calibration. Sensors 13, 7 (2013), 9132–9147.
[22] Emilia Nunzi, Gianna Panfilo, Patrizia Tavella, Paolo Carbone, and Dario Petri.

2005. Stochastic and reactive methods for the determination of optimal cali-

bration intervals. IEEE Transactions on Instrumentation and Measurement 54, 4
(2005), 1565–1569.

[23] SR Postlethwaite, DG Ford, and D Morton. 1997. Dynamic calibration of CNC

machine tools. International Journal of Machine Tools and Manufacture 37, 3
(1997), 287–294.

[24] Daniel D Sleator and Robert E Tarjan. 1985. Amortized efficiency of list update

and paging rules. Commun. ACM 28, 2 (1985), 202–208.

[25] Tobias Wilken, C Lovis, A Manescau, Tilo Steinmetz, L Pasquini, G Lo Curto,

Theodor W Hänsch, Ronald Holzwarth, and Th Udem. 2010. High-precision

calibration of spectrographs. Monthly Notices of the Royal Astronomical Society:
Letters 405, 1 (2010), L16–L20.

[26] Donald W. Wyatt and Howard T. Castrup. 1991. Managing Calibration Intervals.

(1991).

[27] G Zhang and R Hocken. 1986. Improving the accuracy of angle measurement

in machine calibration. CIRP Annals-Manufacturing Technology 35, 1 (1986),

369–372.

[28] Zhengyou Zhang. 2000. A flexible new technique for camera calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence 22, 11 (2000), 1330–
1334.

[29] Zhengyou Zhang. 2002. Method and system for calibrating digital cameras.

(Aug. 20 2002). US Patent 6,437,823.

https://www.beamex.com/wp-content/uploads/2016/12/CalibrationWorld_2007-03-ENG.pdf
https://www.beamex.com/wp-content/uploads/2016/12/CalibrationWorld_2007-03-ENG.pdf
http://www.sandia.gov/LabNews/060331.html
http://www.sandia.gov/LabNews/060331.html
http://www.inspec-inc.com/home/company/blog/inspec-insights/2014/09/30/establishing-calibration-intervals-how-often-should-one-calibrate
http://www.inspec-inc.com/home/company/blog/inspec-insights/2014/09/30/establishing-calibration-intervals-how-often-should-one-calibrate
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/stockpilestewardship/testcapabilitiesand-eval
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/stockpilestewardship/testcapabilitiesand-eval

	Abstract
	1 Introduction
	1.1 Results
	1.2 Related Work

	2 Preliminaries
	3 Online Algorithms
	3.1 Unweighted Single-Machine Algorithm
	3.2 Weighted Single-Machine Algorithm
	3.3 Multiple Machines

	4 Offline Scheduling
	4.1 The Offline Algorithm

	5 Conclusion
	References

