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Abstract—Performance and energy are critical aspects in high performance computing (HPC) data centers. Highly parallel HPC
applications that require multiple nodes usually run for long durations in the range of minutes, hours or days. As the threads of parallel
applications communicate with each other intensively, the communication cost of these applications has a significant impact on data
center performance. Energy consumption has also become a first-order constraint of HPC data centers. Nearly half of the energy in the
computing clusters today is consumed by the cooling infrastructure. Existing job allocation policies either target improving the system
performance or reducing the cooling energy cost of the server nodes. How to optimize the system performance while minimizing the
cooling energy consumption is still an open question. This paper proposes a job allocation methodology aimed at jointly reducing the
communication cost and the cooling energy of HPC data centers. In order to evaluate and validate our optimization algorithm, we
implement our joint job allocation methodology in the Structural Simulation Toolkit (SST) — a simulation framework for large-scale data
centers. We evaluate our joint optimization algorithm using traces extracted from real-world workloads. Experimental results show that,
in comparison to performance-aware job allocation algorithms, our joint optimization algorithm achieves comparable running times and
reduces the cooling power by up to 42.21% across all the jobs.
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1 INTRODUCTION

High performance computing (HPC) data centers de-
ploy thousands of servers working closely together to
solve complex problems. Even though the throughput
of computing systems has increased tremendously over
the last decade, the need for higher performance is
on-going and will not disappear in the near future.
Today’s HPC data centers have highly parallel applica-
tions (such as scientific, financial or other applications)
running on multiple data center nodes. The durations of
such applications are usually in the range of minutes,
hours, or even days. The running time is affected by
the frequent communications between the threads of
these parallel applications, which exchange data and
messages through communication infrastructures such
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as the message passing interface (MPI). Thus, the per-
formance of a communication-intensive application is
highly dependent on the location of the individual com-
puting units that are communicating with each other.
Recent research has demonstrated that the communica-
tion cost of communication-intensive applications has a
significant impact on overall system performance in HPC
data centers (e.g., [1], [2], [3]). Leung et al. have shown
that if two communication-intensive jobs are manually
placed on the machine so that their communication paths
overlap significantly, the running times of both jobs are
approximately doubled [1].

In order to maximize the throughput and avoid band-
width contention resulting from overlapping communi-
cation paths, threads of a job should be allocated on
nodes that are close to each other (e.g., [4], [1], [5]).
Existing performance-aware job allocation algorithms
mostly focus on minimizing the average number of
communication hops among the communicating nodes.
For example, some researchers propose contiguous job
allocation schemes, for which the allocated nodes are
adjacent (e.g., [4], [6]). Other schemes allow discontigu-
ous allocation to avoid fragmentation of available pro-
cessors (e.g., [2], [3]). There are also performance-aware
algorithms developed for transactional enterprise loads
for satisfying the response time constraints imposed by
service level agreements (e.g., [7]). Unfortunately, the
workload and performance models of such algorithms
are not applicable to parallel HPC applications with
intensive communication among the tasks.

Along with the data center computational capacities,



energy consumption of HPC data centers has increased
tremendously. It has been reported that the worldwide
data center electricity consumption increased by 56%
from 2005 to 2010, which accounted for 1.3% of the
total electricity use [8]. A recent review [9] shows that
for every dollar spent on power of data center comput-
ing equipments, another dollar is spent on data center
cooling infrastructures, which translates to an energy
cost reaching up to millions of dollars and cooling costs
reaching close to half of the overall energy cost [10], [11],
[12]. Thus, maintaining cooling and energy efficiency is
becoming one of the main constraints in the design and
management of today’s data centers.

In order to address the cooling challenge in data
centers, prior work has proposed various cooling-aware
job allocation policies (e.g., [13], [14], [15], [16], [17]). In
efficient cooling, one of the key factors is to keep the
computer room air conditioner (CRAC) supply tempera-
ture as high as possible [13]. Therefore, many techniques
focus on decreasing the node inlet temperatures by
allocating power to nodes according to their recirculation
contribution in the data center or minimizing cooling
power through minimizing the peak node inlet temper-
ature (MPIT) (e.g., [13], [14]). There are also strategies
that minimize the sum of server and cooling power in
a data center by turning off some of the servers and
chassis or deciding on the voltage/frequency setting for
the active servers (e.g., [15], [16], [17]).

We observe that the performance-aware and cooling-
aware optimization algorithms for job allocation in HPC
data centers have been developed rather independently.
How to find an optimization algorithm that is able to
reduce the cooling energy cost and, at the same time,
improve or achieve comparable performance on the HPC
system is an open question. In order to address this prob-
lem, we have proposed a joint optimization heuristic in
our recent work for reducing both the cooling power and
the communication latency in an HPC data center at the
same time [18].

This paper expands upon our prior work by pro-
viding an implementation and evaluation on a system-
level simulation framework — the Structural Simulation
Toolkit (SST), which is developed by Sandia National
Laboratories for simulating the performance of large-
scale data centers. Instead of solely using pairwise L,
distance to estimate communication cost [18], we pro-
pose a performance model that computes the impact
of communication cost on system performance based
on experimental data collected from HPC applications
running on real data centers. We target HPC data centers
that are running multi-threaded workloads with heavy
communication among the threads. Our main goal is
to deliver the desired performance and reduce cooling
energy as much as possible. The specific contributions
of this paper are as follows:

o We propose a performance modeling approach to
estimate the impact of communication cost on HPC

system performance. The performance model is based
on a combination of the L; pair-wise distance, ex-
perimental data from HPC applications in real data
centers, and some randomization.

o We design and implement a job allocation method-

ology to jointly optimize the performance and the
cooling energy consumption of a data center. We
implement our performance model, cooling energy
model, and joint optimization algorithm in SST, which
has the ability to evaluate various scheduling and
allocation algorithms for large-scale data centers.

o Experimental results show that, our joint optimiza-
tion algorithm achieves comparable running times
with those of performance-aware policies, while re-
ducing the cooling power by up to 42.21% compared
to performance-aware allocation.

The rest of the paper starts with a discussion of the
related work. Section 3 presents the performance, server
power, and data center cooling models. We introduce
the performance and cooling optimization problems sep-
arately, and then, describe our joint allocation strategy
in Section 4. We present the experimental evaluation in
Section 6 and conclude in Section 7.

2 RELATED WORK

A lot of recent research has been done to improve
the performance and energy efficiency of data centers.
In this section, we first review the related work on
data center job allocation algorithms for optimizing the
performance of HPC applications. We then discuss the
existing methods that focus on reducing the data center
cooling energy costs.

2.1

Most of the performance-aware job allocation algorithms
for HPC data centers and supercomputers typically focus
on minimizing the average number of communication
hops among processors on which a job is running. Some
of the job allocation algorithms allocate only contiguous
(i.e., touching, in close proximity) sets of processors to
each job (e.g., [4], [6], [19]), as contiguous node alloca-
tion provide significant reduction in execution time for
communication-intensive parallel programs. For exam-
ple, Bhattacharya et al. propose a heuristic for job allo-
cation in a mesh-connected parallel processor [4]. They
use a lookahead idea by analyzing the queue of waiting
jobs and propose an algorithm to detect free submesh
area for efficient allocation. However, such contiguous
allocation algorithms may result in external fragmenta-
tion of available processors (i.e., available nodes that are
separated from each other cannot be utilized) and reduce
the achievable system utilization.

A number of recent proposed algorithms on
communication-aware job allocation allow discontiguous
allocation of processors (i.e., the processors given to a
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job do not need to be next to each other). For example,
Mache et al. present the MC allocation strategy for
mesh-connected parallel computers. Their method
yields compact allocations by containing the jobs in
the smallest rectangular area possible [2]. Motivated
by the MC allocation strategy, Bender et al. propose
an MCIx1 processor-allocation algorithm, in which
the first sub-mesh is a 1X1 shell and subsequent sub-
meshes grow in the same way as in MC [3]. Walker
et al. discuss fast algorithms to allocate processors to
compute jobs in mesh-connected clusters [5] by ordering
processors according to some curve and using several
buddy-system strategies. However, these existing
performance-aware job allocation strategies solely target
the performance and communication costs without
considering the potential impact of job allocation on the
cooling costs.

2.2 Data Center Cooling Management

As thermal management and reducing the cooling costs
are among the dominant concerns for today’s data cen-
ters, a number of thermal modeling and management
techniques at data center level have been proposed
recently. Kim et al. use a linear formula with input
parameters of ambient room temperature, thermal re-
sistance between die and air, and server power to find
server temperatures [20]. However, their model does
not consider the effect of recirculation on temperature.
Wang et al. compute the temperature of a compute node
as a combination of an RC-thermal model and a task-
temperature profile [21]. This model assumes that the
thermal map of the data center is available through
input ambient sensors and on-board sensors. Moore
et al. carry out computational fluid dynamics (CFD)
simulations to conduct thermal evaluation, which cannot
be used for real-time data center thermal management
because the computation times are too long [13]. Heath
et al. introduce a data center temperature emulation
suite called Mercury that emulates temperatures based
on the data center layout, hardware, and component
utilizations [17]. Tang et al. propose a linear model to
compute data center temperatures and cooling energy
costs taking recirculation into account [14].

Utilizing the linear model for computing data center
temperatures and cooling energy, Tang et al. introduce an
optimization problem for minimizing the peak node inlet
temperature (MPIT) through job assignment [14]. They
use both a genetic algorithm and sequential quadratic
programming to solve the problem. Moore et al. present
two temperature-aware workload placement algorithms:
the first assigns workloads to servers based on location-
aware discretization heuristics and the second mini-
mizes the heat recirculating within the data centers [13].
Pakbaznia et al. propose Minimum Total Data Center
Power (MTDP) algorithm to minimize the total of server
and cooling power in a data center by turning off
some of the servers and chassis and deciding on the

voltage/frequency setting for the servers [15]. These
techniques focus on reducing temperature and cooling
cost of data centers without considering the impact of
the workload allocations on application performance.
Sansottera et al. proposes the Greedy Least Power (GLP)
algorithm to minimize the power consumption while
satisfying response time constraints imposed by ser-
vice level agreements [7]. Their main focus is not HPC
applications with intensive communication; thus, their
model does not consider communication latency during
allocation.

2.3 Distinguishing Aspects from Prior Work

Our work differentiates from prior research as our job
allocation policy optimizes both the application perfor-
mance in terms of reducing the communication cost
and the cooling energy cost of HPC data centers. Our
policy confines the communicating nodes of a job in close
proximity, while at the same time, selecting the most
cooling-efficient locations possible. In comparison to our
prior work [18], we propose a performance model that
estimates the impact of communication cost on the per-
formance of HPC applications by utilizing experimental
data from a real data center. We implement the joint
optimization algorithm in the SST simulation framework
and compare the impact of prior performance-aware and
cooling energy-aware job allocation policies on system
performance and cooling energy. We demonstrate that
for jobs involving intensive communication among the
nodes, application performance becomes an important
factor in determining the cooling energy.

3 SYSTEM MODELING METHODOLOGY

In this section, we present the modeling methodology
for our target HPC center. We first introduce the layout
of the data center. Then we provide the performance
simulation setup, which is used for computing the com-
munication delays in the data center. The last part of the
section describes the server power and cooling energy
models.

3.1 Target Data Center System

Our target system in this paper is a small size data center
with two rows of industry standard racks arranged in a
layout shown in Figure 1. In this arrangement, rack inlets
where the cool air is supplied are facing the outer aisles
forming cold aisles at the sides. Rack outlets, where the
hot air exits, are facing each other forming a hot aisle in
between the two rows. Each row is composed of 5 racks
and each rack has 4 compute nodes. In our experiments,
we assume that each node includes 10 servers and each
server has 2 processors. This layout corresponds to a
total of 800 processors across the two rows of the data
center. The proposed data center setup has been widely
used in prior work and is a small-scale representative of
today’s data center configurations [7]. Our methodology
and proposed policy are scalable to larger data centers.



Fig. 1: Layout of the data center.

3.2 Performance Model

We design job allocation algorithms for mesh-connected
HPC data centers and supercomputing systems. Mesh-
connected networks for message passing are widely
used in many experimental and commercial distributed-
memory parallel computers, such as IBM BlueGene/L
and Cray X systems.

We specify our workloads as jobs that request a num-
ber of nodes in the data center. This specification is in
line with the practice in HPC data centers and has also
been used in standard workload formats [22]. We base
our communication cost computation on the average
pairwise L; distance (Manhattan distance) across all the
communicating nodes of a job running on the mesh-
connected parallel system [3]. We employ L; distance
as our metric as it has been demonstrated to correlate
with application running time [1]. We call the total L,
distance among the nodes of a job the communication cost
and formulate it as follows:

DS

(s,t)e(S,T)

CCjob = [ww(sv t) + wy(87 t) +w, (87 t)] (1)

where n is the job size (the number of nodes a job
requires), (s,t) is the pair of source and destination
nodes of a message and (S, T') is the set of all the source
and destination node pairs for all the messages. In this
work, we assume n > 1 for all jobs. w,(s, t), w,(s,t) and
w;(s,t) represent the distance between s to t along the
X, y, and z-axes, respectively. Division by n provides the
normalization with respect to job size; thus, CCj,;, gives
the communication cost of a job per node.

In this paper, we assume all-to-all communication pat-
tern for our workloads. All-to-all is a common commu-
nication pattern in HPC routines such as Fast-Fourier-
Transform (FFT), which is part of several applications
including molecular dynamics, quantum chemistry, and
digital signal processing [23]. In an all-to-all pattern, each
processor communicates with all the other processors
that are running the threads of the same job.

In order to model the impact of communication cost
on system performance, we use a combination of the
L, pairwise distance C'C},, running time measurements
from real-life traces, and some randomization to formu-
late a delay factor. In our model, the total running time
of the application is composed of computation time and
communication time. Communication time of the appli-
cation is a function of job communication cost, which we
call as delay factor and denote as 7(CC},). Equation (2)
shows the total running time of an application:

t'=07xt+0.3%x7(CCjop) Xt )

where t is the running time of the application without
considering the communication cost arising from job
allocation decisions, 7(CCjq) is the delay factor result-
ing from the communication cost and ¢’ is the actual
resulting running time of the job.

In order to extract the coefficients of the function 7, we
experimented with miniGhost [24], an application with
all-to-all communication pattern, on a real data center
at Sandia National Laboratories. MiniGhost is modeled
on the computational core of CTH [25], from which it
inherits nearest neighbor and all-to-all communcation
patterns. We ran our experiments on Cielo [26], number
26 on the November 2013 Top500 list [27]. It is a Cray
XE6 organized as a 3D torus and which uses non-
contiguous allocation.

Figure 2 shows the relationship between the average
hop distance and the delay factor 7. As seen from Figure
2, there is variation in the experimental results. We
model this variation as r, which is a random number
scaled by the L, pair-wise distance. By applying linear
regression to fit the experimental data, we come up with
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Fig. 2: The modeling of delay factor for the running time
of applications as a function of the communication hop
distance.



Equation (3) as follows:

7 = 0.9875 + (0.0962 x CCjpp) + 7 3)

3.3 Data Center Server Power Model

The power consumption of data center severs is the
dominant factor that determines the server temperatures
and the cooling energy required to maintain safe temper-
atures. Power consumption of the servers varies with
their activity. Based on reported power consumption
values of several data center servers [7], [28], we assume
that a server consumes 250W during computationally-
intensive phases, 200W during communication-intensive
phases, and 100W when idle.

Power consumption is lower during the communica-
tion phases due to the lower CPU activity and the time
spent in I/O. We target large HPC jobs and assume that
each job fully occupies a set of nodes (ie., all of the
servers in a node would be assigned to the same job).
Therefore, for each node, each containing 10 servers, the
total power of the node is 2500W, 2000W, or 1000W,
depending on the activity.

We compute the total power of a node while executing
a job as the weighted sum of the computation and
communication power. We observe that HPC jobs spend
a large percentage of time in communication, and the
ratio of the communication time to total running time
typically varies between 20% to 40% [29], [30]. We select
the ratio of communication time to running time as
30% in this work, which represents an average case for
HPC. Our experimental choices are set similarly with
real-life scenarios in today’s HPC clusters. Without loss
of generality, the proposed techniques are applicable to
data centers with different server power levels and ap-
plications with different communication to computation
ratios. Section 6 discusses how the results vary as the
power and communication activities change.

3.4 Cooling Energy Model

In the typical data center layout we use, racks and
perforated vent tiles are placed on a raised floor. Cold
air enters the room from the floor tiles, goes into the
rack inlets from the sides, and gets hotter as it moves
through the racks. Hot air exits the rack from the back
into the center aisle and the exhaust air exits the room
from the ceiling to be cooled again. This set-up is called
hot aisle/cold aisle arrangement which avoids mixing
cold supply air with exhaust air.

In order to compare different job allocation strategies,
we need a fast and accurate data center thermal model.
We use the model proposed and validated by Tang et
al [31]. Their model combines a linear, low complexity
heat recirculation model with a linear power model.
This model is more practical than most other existing
models as it requires a set of CFD simulations only
once to characterize the data center. Once we have the

measured data center specific parameters, the vector of
inlet temperatures, Ty, for all the nodes are computed
using the following linear equation:

Tin, = Tsup + DP 4)
D=[(K—-ATK)"' — K] (5)

where T, is the CRAC unit supply temperature vector,
D is the heat distribution matrix and P is the node power
vector. K is the thermodynamic constant matrix and A is
the heat cross-interference coefficient matrix representing
the recirculation phenomena. K is calculated as:

K = diag(K;) (6)
K; = pficy )

where p=1.19 Kg/m? is the density of air, f;=0.2454 m?3/s
is the flow rate of node i (assumed fixed for all nodes),
and ¢,=1005 J/KgK is the specific heat of air [14].

Matrix A represents the fraction of output heat from
each node that is recirculated to the inlet of other nodes.
It is an n x n matrix for a system with n nodes with
each term a;; representing the fraction of heat at node
i recirculating back into node j. It has been shown that
elements of matrix A mostly depend on the data center
layout rather than the power consumption of the nodes
or the supply temperature [7]. Therefore, this matrix is
obtained once for a data center. The matrix is calculated
through CFD simulations in prior work [31]. If one
has input ambient sensors mounted already, A can be
obtained using sensor measurements instead of CFD
simulations and following the same procedure in [31].
We use the coefficients for the data center given in [7].

Figure 3 shows the cross-interference coefficient ma-
trix for the 40-node system in colormap and 3-D formats.
We insert the colormap plot given in [7] into MATLAB
to extract the coefficient value corresponding to each
data point in the image. We map RGB values to indexes,
which preserve the relationship between coefficients rel-
ative to each other. Next, we perform calibration by
scaling the matrix according to the given temperature
graph in [7]. For a data center with different layout
and heat flow characteristics, matrix A differs. However,
the equations to calculate the inlet temperatures are
independent of the data center; in other words, the
model applies to data centers in general.

The power values of data center nodes are calculated
based on the job allocation. We calculate the inlet tem-
peratures of data center nodes resulting from different
allocation schemes using Equation (4). We perform node-
level allocation in this paper, which is a reasonable
hierarchical level for HPC data centers. Assume a given
task of size n, which corresponds to the total number of
nodes a task requires, and an integer variable x; showing
whether node i is assigned a job or not (i.e., it is either
1 or 0, respectively). Power consumption of node i can
be expressed with a linear model as follows:

P; = Pigie + x; Py 8)
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Fig. 3: Cross-interference coefficient matrix for our data
center.

where P,q. is the node idle power and P, is the
power consumed by a node when running a task. This
assumption of fixed node power when running a task is
reasonable for HPC data centers, because even though
there are fluctuations in the power, they are much
smaller compared to the total power.

Once we get the node inlet temperatures using Equa-
tion (4), we need a cooling power model to estimate
the power consumed by the cooling unit at various
temperatures. This power depends on the efficiency of
the CRAC unit. One of the most common metrics used
for CRAC unit efficiency is the coefficient of performance
(CoP). CoP is defined as the ratio of the heat removed
from the system to the energy spent on cooling and has
the following formula:

P.
CoP = —= 9
Pac )

where P, is the total computing power (sum of the
values in P vector) and P4c¢ is the cooling power. CoP
increases with higher CRAC supply temperature (T,;).
In this work, we use the CRAC unit CoP model given
in prior work [13] as follows:

CoP(Tsyp) = 0.0068 Tsyp> + 0.0008 Ty + 0.458  (10)
where T, is in Celcius. The upper limit on how much
we can increase supply temperature (7,,) depends on
the difference between redline temperature (77..q), which
is the highest allowed temperature at the node inlets,
and maximum node inlet temperature (7, mqz). In other
words, we can use this temperature slack to increase
the supply temperature and operate at higher CRAC
efficiency without violating the temperature constraints.
A new supply temperature is found by adding this dif-
ference to T, and cooling cost is calculated as follows:

TSUIJ/ = Tsup + Tred - Tin,max (11)

P,
Pio=—+—— 12
ACT CoP(Toy) (12)
P, c
PACsavings = (13)

CoP(Tawp) CoP(Taup!)

This model provides fast results as it does not require
time consuming CFD simulations and it is able to cap-
ture the effect of recirculation, which has a significant
contribution in server temperatures in current data cen-
ters.

4 OPTIMIZATION METHODOLOGY

In this section, we first formulate and solve the cool-
ing energy optimization and communication cost opti-
mization problems individually. For cooling cost min-
imization, we use the Minimize Peak Inlet Temper-
ature (MPIT) algorithm [14]. For communication cost
minimization, we deploy the MC1X1 algorithm [3]. We
then propose a job allocation algorithm, which takes
both cooling efficiency and communication latency into
consideration.

41

The maximum cooling energy saving is achieved when
the maximum inlet temperature in the data center is
minimized [14]. Therefore, a cooling-aware allocation
policy such as MPIT [14] assigns jobs to nodes so that
the resulting max{T;, } will be minimized. We formulate
the optimization problem of allocating a job to an idle
data center with minimal cooling energy as follows:

Cooling-aware Job Allocation Policy

minimize
Xdcenter

max{Tin(Xdcenter)}

N (14)
subject to le = Ndcenter i € {0, 1}

i=1
where Xgcenter 1S a vector described as Xgcenter =
{z1,22,....,xn}, where z; (i = 1,...,N) represents
whether node i is assigned a job or not. Vector X gcenter
shows all of the busy nodes in the data center corre-
sponding to currently and previously allocated jobs that
are still running. ngeenter is the sum of the sizes of all
jobs running on the data center. T;,, represents the vector
of inlet temperatures of a data center, which is defined
in Equation (15).

Tin (Xdcenter) = Tsup + D. Pidle + D- Xdcente’r : Putil

(15)
where Ty, is the CRAC unit supply temperature, D is
heat distribution matrix. P4, and P,;; are the idle and
dynamic power for the nodes. Note that while allocating
each job, we use additional constraints to represent the
currently busy nodes. For example, if nodes 1, 2 and 3



are busy at the time of allocation, we add the constraints
x1=1, x9=1, x3=1 to solve the problem.

As described in Section 3.4, cooling cost is highly de-
pendent on the CRAC supply temperature T,,. There-
fore, if we can increase Ty, as much as possible without
causing the nodes to exceed the redline temperature,
we can reduce the cooling power accordingly. The max-
imum allowed Tj,, increase, therefore, is limited by
the maximum inlet temperature max{T;, }. In our MPIT
implementation within SST, when a new job arrives, we
formulate and solve the optimization problem in C++
using the GNU Linear Programming Kit (GLPK) [32].
We use Equations 14 and 15 to obtain an integer linear
program, then relax the constraints to allow a job to
be assigned fractionally to some nodes. This results in
a linear program which we solve using GLPK. GLPK
returns a real number solution z,., and we use the
discretization algorithm suggested in prior work [14] to
convert it to the nearest integer solution z;,; which obeys
the constraints. This algorithm was shown to give the
highest power savings among various other approaches
[14]. For various allocations, we have compared the
max{T;,} of both real and integer solutions and con-
firmed that the results are the same to the second decimal
point.

4.2 Performance-aware Job Allocation

A performance-aware job allocation algorithm tries to
maximize performance when it assigns processors to a
job. This is done by grouping the assigned processors
close together. Specifically, we try to minimize the av-
erage number of hops (i.e., the L; distance in a mesh)
between each pair of allocated nodes.

Minimizing the average pairwise L; distance opti-
mally is still an open problem, so several approximation
algorithms have been developed. Two of these have
already been implemented as allocation algorithms in
SST. The first, the Manhattan Median, or MM algorithm,
is a 2 — 5 approximation in a d-dimensional mesh. The
second, MC1x1, is a (2 —2/k)d approximation algorithm
when k processors are desired [3]. While MM has better
provable performance, it is much slower than MC1x1.
Our paper focuses on the more feasible MCl1x1 algo-
rithm, which is what we will modify to obtain our hybrid
algorithm.

At a high level, the MM algorithm works as follows.
The algorithm considers any node as a potential center
point. For each of these potential centers, it finds the &
closest nodes by the L; metric, and calculates the average
pairwise L; distance between them. It returns the set of
k such points with the smallest average L; distance.

The MC1x1 algorithm uses the same high-level strat-
egy as MM, but differs in several details. MC1x1 only
considers free nodes as potential centers. Nodes are
chosen by gradually building up shells, squares of in-
creasing length centered on the given center node. This
is equivalent to using the L., metric instead of the L,

metric in MM. Finally, the last shell may be partially
empty; in fact the job may only need one or two nodes
in the final shell. The MClx1 implementation in SST
attempts to cluster the processors in the final shell, which
seems to improve the average pairwise L; distance in
practice.

4.3 Joint Optimization Policy

In this section, we provide the details of our optimization
policy, which aims at jointly optimizing the cooling
energy and communication cost of applications running
in an HPC data center.

As discussed in Sections 4.1 and 4.2, the existing
performance-aware and cooling-aware job allocation
policies minimize the communication latency and cool-
ing power independently, which means that the resulting
allocations may not be successful when both objectives
are considered simultaneously. Cooling-aware job allo-
cation needs to consider the layout of the data center
as the recirculation effect changes depending on the
location of the active nodes. In most cases, cooling-aware
policy allocates jobs to the nodes located far from each
other. For example, for a job of size 4, cooling-efficient
allocation distributes the job equally among the data
center rows in order to minimize the peak inlet temper-
ature. This causes very high communication latency for
cooling-aware policy. On the other hand, performance-
aware MC1X1 policy confines the nodes of each allocated
job into the smallest possible shell. It follows a regular
pattern to allocate the jobs in the data center and arbi-
trarily breaks ties. It does not take into account whether
an allocation results in high temperature as long as the
allocated nodes are within the smallest shell possible,
potentially causing inefficient cooling.

Incoming job with size n
Current allocation status Xy qnzer
Current node power vector P

Apply cooling-aware MPIT
algorithm to find
candidate shell centers

U

On each candidate shell
center, apply performance-
aware MC1x1 algorithm to find
\_ candidate allocations Y,
to the job allocation ¥

. Ve N
decision Among the candidate
allocations, select the one with
minimal cooling power )

Fig. 4: A flowchart for illustrating our joint optimization
algorithm.

Allocate the
next job in the
Job-queue

Update Xdcenter
and P according




In order to optimize the performance and cooling
energy at the same time, we design a heuristic algorithm
combining both policies. As illustrated in Figure 4, our
algorithm first considers the cooling-aware job allocation
solution. It then uses the resulting nodes as candidates
for shell centers to apply the performance-aware job
allocation policy. Then, we break the ties of possible
performance-aware job allocations by selecting the allo-
cation with minimal peak inlet temperature.

We modify the MC1X1 algorithm to make it open
a shell centered at a given input node (possible shell
center) accordingly. In MC1X1, opening a shell centered
at a node refers to finding the smallest square-shaped
area to include all nodes of a job. Starting from the
smallest shell (1 square unit), the number of available
nodes in the shell is checked. If the size of the job is
larger than the available nodes, the shell is expanded.

When the available node count is met, the policy
examines whether there are multiple allocation options
within the shell area. For example, assume that we have
a shell with 9 nodes, 3 of whom are busy, and we will as-
sign a job of size 4 to the rest. In this case, we choose the 4
nodes with minimum communication cost possible. The
resulting selection is the possible allocation correspond-
ing to that possible shell center. For each possible shell center,
the revised MC1X1 algorithm gives an allocation vector,
possible_X_dcenter. Among those vectors, we select the
most cooling efficient one (i.e., resulting in smallest peak
inlet temperature). For example, assume that for a job
i of size 3, the cooling-aware policy assigns the job to
nodes 1, 4, and 5. We open shells centered at those nodes
and select the one with the smallest inlet temperature.
For the cases where two or more allocations result in
the same inlet temperature but different communication
costs, we find and choose the smallest communication
cost allocation.

5 SIMULATION INFRASTRUCTURE

In this paper, we target communication-intensive par-
allel applications that use high-level message passing
interfaces such as MPI. It is impractical to explore the
vast design space of parallel resource management algo-
rithms for such data centers without a detailed system-
level simulation framework. Addressing the challenges
of managing HPC centers running communication-
intensive parallel applications requires design guide-
lines from simulation studies. This section introduces
the simulation framework (SST) we use for evaluating
our joint optimization algorithm managing real-world
parallel workloads, as well as the implementations of
job scheduler and allocation algorithms in SST.

5.1 Structural Simulation Toolkit (SST)

We implement our evaluation models and allocation
optimization methods in SST, the Structural Simulation
Toolkit. SST is an architectural simulation framework

designed to assist in the design, evaluation, and opti-
mization of HPC architectures and applications [33]. It
is developed by Sandia National Laboratories to evalu-
ate the performance of computer systems ranging from
small-scale single-chip processors to large-scale parallel
computing architectures.

The simulation in SST is based on component-based
discrete events. The concept of component in SST refers
to one of the simulating elements. For example, Gem5
[34] is a component that has been integrated in SST
for simulating performance. SST synchronizes the events
from different components through communication be-
tween components [35]. The scheduler is implemented
as one of the components of SST for simulating the
workload scheduling and job allocation in HPC data
centers. In our evaluation of job allocation algorithms,
we use the FASY scheduler for all our experiments
in SST. The EASY scheduler also known as aggressive
backfilling only gives a guaranteed start time to the first
job in the queue at any time [36]. However, this is enough
to prevent starvation for all jobs.

SST reads jobs from a simulation file and sends it to
the scheduler. The scheduler runs each waiting job as
processors become available; the exact start time of each
job depends on the scheduler being used. The allocator
then assigns a set of processors to run the job. SST
figures out the running time of the job based on the
data in the simulation file and the processors which are
allocated to it. We have extended SST such that after
the allocation decision is made, SST calculates the server
inlet temperatures and cooling energy of the HPC center.
Once the job finishes, SST frees the processors, leaving
them available to run other jobs.

We update the timing based on both the original
job length from the simulation and the quality of the
allocation. Section 3.2 presents how the performance of
an HPC application is modeled to reflect the impact of
communication cost resulting from different allocation
decisions.

5.2 Job Scheduler Implementation in SST

The scheduler component handles the placement of jobs
onto a simulated system. To do this, it simulates schedul-
ing, the decision of when jobs run, and processor allo-
cation, the decision of which processors they should be
assigned to.

The scheduler in SST was designed using an object-
oriented approach. Figure 5 shows a simplified class
diagram. The scheduler has a Main class which uses
command line arguments to identify the desired sim-
ulation, parses a trace derived from the Parallel Work-
loads Archive [22] for characteristics of the jobs to run,
and manages events for job arrivals and completions.
Main uses objects from the abstract classes Scheduler,
Allocator, and Machine to store most of the sim-
ulation state and to make decisions. Classes derived
from these implement different versions of the necessary
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Fig. 5: Simplified class diagram for scheduling/allocation component/element.

functionality, with the abstract base classes enforcing a
shared interface so that different combinations of sched-
ulers and allocators can be used together as needed for
different research projects.

Common schedulers and allocators have been im-
plemented for use as baselines. Provided schedulers
include EASY [36] (EASYScheduler), a generaliza-
tion of Conservative [37] (StatefulScheduler), and
a priority-based scheduler (PQScheduler). The latter
uses a set of comparators (not shown in Figure 5) to
select between first come first serve (FCFS), Shortest
Job First, Widest Job First, and similar priority-based
schemes. Most of the allocators are meant for mesh
systems, with classes derived from Allocator imple-
menting allocators based on linear orderings [38], [1], [5]
(LinearAllocator), center-based allocators [2], [39],
[3] (NearestAllocator), and buddy systems [38], [5]
(MBSAllocator). In addition, to speed up simulations
where scheduling is the focus and allocation is unnec-
essary, the system provides a “bag of processors” with
no notion of locality (SimpleMachine) along with the
appropriate allocator (SimpleAllocator).

To integrate the scheduler with the rest of SST, there
is a class to represent the component as a whole and
to handle the interface between the scheduling and
allocation objects and the other components of SST. This
interface includes using the XML to initialize the compo-
nent and receiving job arrival events as SST messages.
Starting jobs and learning of their completion involve
interacting with node components, one for each node in
the system. The Allocator classes notify the interfacing
class, which sends the appropriate nodes an SST message
to begin processing. As each node completes its part of a
job, it sends an SST message back to the interfacing class,
which gathers these until all nodes assigned to the job
have completed, at which point the rest of the scheduler
is told of these nodes’ availability. Returning the nodes
to availability all together mimics the behavior of real
systems.

5.3 Allocation Algorithm Implementation in SST

We implement the joint optimization algorithm in SST
in order to evaluate our allocation strategy and compare

with the existing performance-aware and cooling-aware
job allocation methods.

The main idea of our joint optimization policy is
to achieve both cooling awareness and performance
awareness while allocating jobs on HPC data centers.
Since the performance-awareness has been handled by
the scheduler component in SST as discussed in Sec-
tion 5.2, we implement the joint optimization algorithm
by adding the solver for the cooling-aware optimization
algorithm. We also incorporate an interface into SST
for the scheduler and cooling-aware optimization solver
to call each other interactively. The cooling-aware opti-
mization algorithm (MPIT) is implemented by using the
GLPK solver to find the allocation decision that provides
the lowest peak inlet temperature for our target data
center.

Once a job arrives, the scheduler component first
calls the cooling-aware optimization solver to check on
which nodes the cooling-aware policy would allocate the
job. These nodes are treated as possible shell centers as
described in Section 4.3. The scheduler then feeds the
locations of these possible shell centers to the performance-
aware algorithm (e.g.,, MC1x1) to select possible allo-
cations that provide the lowest communication-cost. If
multiple allocation choices are provided, the scheduler
will calculate the cooling power consumption resulted
by each allocation decision and select the one with
the lowest cooling temperature. The entire process will
repeat for each job in the job queue until the workload
is finished.

6 EXPERIMENTAL RESULTS

In this section, we present the experimental results for
our joint optimization algorithm and the existing job
allocation algorithms. We first compare the performance
and cooling power between performance-aware and
cooling-aware job allocation algorithms using workloads
from real-world parallel workloads archive [22]. We then
present the performance and cooling power evaluation
results for our joint optimization algorithm, and com-
pare the results against performance-aware and cooling-
aware job allocation policies. All of our experiments are



conducted in SST to accurately mimic the performance
and energy behavior of HPC data centers.

Figure 6 presents the runtime and cooling power con-
sumption resulting from using the existing job allocation
algorithms. We use DAS — F'S4 traces from the paral-
lel workloads archive as our workload, which include
32953 jobs in total. The bars in Figure 6 represents the
average runtime and cooling power for all the jobs
in the DAS trace. We observe that the cooling power
consumption varies significantly across different job allo-
cation algorithms. Among the five existing job allocation
algorithms, cooling-aware job allocation results in the
smallest cooling power consumption. MC1x1 job alloca-
tion algorithm causes 14.02% and 9.27% more cooling
power in comparison to the cooling-aware algorithm
and random allocation, respectively. On the other hand,
MCI1x1 provides better performance than random and
cooling-aware allocations by reducing the communica-
tion cost between different threads. In comparison to the
cooling-aware algorithm, MC1x1 improves performance
by 3.16%, while it reduces job running time by 6.78%
compared to the random job allocation.

We conduct the same experiments using a differ-
ent workload from parallel workloads archive: NASA,
which includes 18239 jobs. As shown in Figure 7, we
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Fig. 6: Performance and cooling power comparisons
between different job allocation algorithms for DAS-FS4
workload from parallel workloads archive.
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Fig. 7: Performance and cooling power comparisons
between different job allocation algorithms for NASA
workload from the parallel workloads archive.
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observe similar trends as in the results of D AS workload.
MC1x1 job allocation algorithm, in this case, causes
4.56% more cooling power consumption in comparison
to cooling-aware algorithm, and 3.20% more cooling
power than random allocation. The detailed simulation
results for both NASA and DAS workload are listed
in Table 1. From Table 1, we observe that cooling-aware
job allocation algorithm provides us much lower cooling
power consumption than the other job allocation algo-
rithms. For example, for NASA workloads, Genalg job
allocation algorithm results in 3.81% more cooling power
consumption than cooling-aware allocation. (Genalg is
the center-based algorithm of Krumke et al. [39].) On
the other hand, the cooling-aware algorithm in general
results in poor application performance when compared
to the other policies. For example, for DAS workloads,
the resulting job running time when using cooling-aware
job allocation algorithm is about 3.14% longer than using
Genalg algorithm, which is not desired in HPC data
centers.
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Fig. 8: Data center cooling power traces for job 101 to job
200 from NASA workload with different job allocation
algorithms.

In order to better understand the thermal behavior
of HPC data centers resulted by different job allocation
decisions, we select 100 jobs from NASA workload (job
number 101 to 200) and illustrate the cooling power
traces of the target data center running these jobs in
Figure 8. We observe a significant difference between
the cooling powers resulting from different allocation
algorithms. For example, for the first seven jobs in the
selected job queue, using MC1x1 job allocation algorithm
(which only considers minimizing communication time),
the data center spends about 80KW on cooling power
while it only spends around 20KW by using cooling-
aware job allocation algorithm. These results show that,
solely considering performance is not enough in making
effective job allocation decisions. It is important to have
a joint optimization algorithm to consider cooling energy
and performance at the same time when allocating jobs
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TABLE 1: Performance and cooling power comparison results between different job allocation algorithms.

] Allocation Algorithms | MCix1 | Genalg | MM | Random | Cooling-Aware |
NASA | Cooling Power (KW) 93.74 93.06 93.08 90.83 89.64
Runtime (Second) 2630.53 | 2631.08 | 2631.58 | 2812.50 2714.71
DAS Cooling Power (KW) 86.48 85.53 85.65 79.14 75.85
Runtime (Second) 2891.44 | 2892.03 | 2892.43 | 3087.34 2982.78

in data centers.

Motivated by the performance and cooling energy
behavior of existing job allocation algorithms, we design
our joint optimization algorithm, which considers per-
formance and cooling energy consumption at the same
time. In order to evaluate the runtime and cooling power
of our algorithm, we conduct the same experiments us-
ing both NASA and DAS—FS4 workloads from parallel
workloads archive. The number of processors required
by jobs from NASA and DAS workloads ranges be-
tween 1 and 40, and the corresponding system utilization
ranges from 2.5% to 100%.

Figure 9 shows the total runtime of NASA and DAS
workloads when using our joint optimization algorithm
compared with the MClxland cooling-aware allocation
algorithms. We see that our joint optimization algo-
rithm provides comparable performance benefits as the
performance-aware allocation policy. For NASA work-
load, our joint optimization algorithm saves job running
time by 2.93% in comparison to cooling-aware optimiza-
tion algorithm. For DAS workload, our algorithm im-
proves performance by 2.92% compared to the cooling-
aware algorithm.

We compare the resulting cooling power of NASA and
DAS workloads using our joint optimization algorithm
against the MClx1 performance-aware job allocation
algorithm and cooling-aware algorithm in Figure 10. We
see that, for the target data center under 100% (i.e., all
nodes are occupied, e.g., the first five jobs in the job
queue) and 2.5% (i.e., only one node is occupied, e.g., the
sixth job in the job queue) utilization, the algorithms give
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Fig. 9: Runtime comparisons between the 3 algorithms
for NASA and DAS workloads from parallel workloads
archive.

allocations resulting in the same cooling power. Across
all the jobs of DAS workload, our joint optimization pol-
icy results in up to 42.21% less cooling power consump-
tion in comparison to MC1x1 algorithm. Across all the
jobs in NASA workloads, our joint optimization policy
achieves 39.02% less cooling power consumption than
MC1x1, while retaining similar system performance.
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Fig. 10: Cooling power comparisons for the 3 algorithms
for a section of the NASA and DAS workloads from the
parallel workloads archive.

7 CONCLUSION

In this paper, we have proposed a joint job allocation pol-
icy to optimize both cooling power and communication
latency in HPC data centers. Our policy first uses the
MPIT algorithm to find the most cooling-efficient nodes
to allocate a job. It then applies the modified MC1X1
algorithm to allocate the job on cooling-efficient nodes
while keeping the average L; distance at a minimum. We
have implemented the data center cooling energy model
and our joint optimization algorithm in a structural
simulation framework (SST). Utilizing the simulation
framework, we have compared the performance and
cooling energy consumption of existing job allocation al-
gorithms. We have also validated our joint policy under
real-world workloads from parallel workload archive
and observed that, for HPC applications with 30% com-
munication, our policy decreases the cooling power by
up to 42.21% in comparison performance-aware policies.
At the same time, we achieve comparable performance
to that of the performance-aware policy.
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