GPU Architecture

This Week: GPU Programming

XN PN

Processor Architecture

GPU Register Model

Shader Launch

GLSL Language

Implicit Surtaces

Sphere Tracing Algorithm
Leveraging Reference Frames
Procedural Texture

oh—. \—/.
)3 7% JF\T—_F]
GPU ARCHITECTURE (++c33237)
"o o6 LY /e ". &L H —

Program Counter a.k.a. Instruction Pointer (“PC” or “IP”)

[Stack pointer (“SP”), Base pointer (“BP”), Condition codes]
General-purpose registers (“reg” or “GPR”)
Fast, small memory (today: on-chip caches and local/shared memory)

Slow, large memory (today: off-chip DRAM...and network and disk)

Generic Processor

. . Control
1$ Instructions Decode & Dispatch ntro
Data
— Regisr File
Processor

$ = “cache”
ALU = Arithmetic Logic Unit

Streaming Vector Processor

Simplify

g Instructions s & Dispatch Control « No out-of-order, branch

prediction, etc.
* Many ALUs and
registers in saved space

Fast context switch
* 100,000s of threads

* Swap during memory
Processor latency

Special stream in/out path Vectorize instructions
* Bypass cache * Execute each 32x
 Self-synchronized by scheduling * Amortize instruction fetch & decode

Streaming Vector Processor

Implications: Simplify
o . * No out-of-order, branch
* Explicit memory load is slow prediction, etc.
« Explicit memory store is very slow (and unsafe) * Many ALUs and
+ Stack is slow (affects context swap) registers in saved space

 Pointers are slow (most data are in registers!) :
. .) Fast context switch
« Computed array indexing is slow (same as above) - 00,0005 of threads
* Divergence is slow (splits vectors) * Swap during memory

« Everything else is very fast! latency
Special stream in/out path Vectorize instructions
* Bypass cache * Execute each 32x

* Self-synchronized by scheduling * Amortize instruction fetch & decode

HLSL/GLSL

* Designed to prevent writing slow programs
— Stack is slow — no recursion, fully-inlined program
— Pointers are slow — no pointers
— Memory store is slow — hard to use
— Memory load is slow — abstract through “texture” functions
— Abstractions might hide slow code — only C-level features

 Result: awkward, but fast

* You can use other languages for GPU programming (CUDA,
OpenCL, C++ -> SPIRY, etc.)

GLSL Syntax Tips

* “Inout” =C+ &

* “const” = C++ “static const”...must be compile-time evaluable
» Use #define instead of typedef

* Maximum single-precision float and int (no double or long)

* No heap allocation

* No Doxygen support

GLSL Inlines Everything

* Small, fixed-length loops unroll completely

* Branches on compile-time constants are free

* Dead code is free

* No pointers

* No exceptions

* No recursion allowed (but you can build your own slow stack)

* No function pointers (and no classes or methods, but you can use
switch)

* No pointers + no recursion = no data structures except fixed-length
array and struct

GLSL Hidden Performance

* More registers = fewer threads = slower

* Float is much faster than int!
« Some intrinsics are very fast:

— normalize()
— dot()

* Multiply-add is a single operation
* Branches and loops have high overhead and create divergence
— But conditional assignment is inexpensive!

« Computed array indices force the array out of registers into cache (slow!)

%... o o .

v Ie==l 3
GPU SHADER LAUNCH
T BRI T TN =
; 0 N ‘*\’

¢ o

Shader Launch Modes

* “Compute” mode

— Iterate over 1D, 2D, or 3D rectangular bounds
— Like G3D::Thread::runConcurrently on CPU

* “Graphics” mode
— Iterate over an indexed triangle list’s vertices, geometry, and pixels
— Special depth test support for pixels
— Automatic clipping to 3D frustum

— Some other exotic cases (tessellated patches, stencils, paths, axis-aligned
rectangles)

G3D Syntax

for a pixel shader on a full-screen rectangle in “Graphics” mode

/| Prepare for the 2D rectangle
rd->push2D();

// Pass arguments from the CPU to the GPU

Args args;

args.setUniform(“center”, Point3(x, y, z));
args.setUniform(“environmentMap”, environmentMap, Sampler::cubeMap());

// Set the indexed triangle list to two triangles covering the near plane
args.setRect(rd->viewport());

LAUNCH_SHADER(“mycode.pix”, args);
rd->pop2D();

m N :) oo
THE RASTERIZER
Z .o' oo 5' ~e. N\o

