
GPU Architecture 



This Week: GPU Programming 

1.  Processor Architecture	
2.  GPU Register Model	
3.  Shader Launch	
4.  GLSL Language	
5.  Implicit Surfaces	
6.  Sphere Tracing Algorithm	
7.  Leveraging Reference Frames	
8.  Procedural Texture	



GPU ARCHITECTURE (++CS237) 



State 
•  Program Counter a.k.a. Instruction Pointer (“PC” or “IP”)	

•  [Stack pointer (“SP”), Base pointer (“BP”), Condition codes]	

•  General-purpose registers (“reg” or “GPR”)	

•  Fast, small memory (today: on-chip caches and local/shared memory)	

•  Slow, large memory (today: off-chip DRAM…and network and disk)	



Generic Processor 



Streaming Vector Processor 
Simplify	
•  No out-of-order, branch 

prediction, etc.	
•  Many ALUs and 

registers in saved space	
	
Fast context switch	
•  100,000s of threads	
•  Swap during memory 

latency	
	

32x	

32x	

Special stream in/out path	
•  Bypass cache	
•  Self-synchronized by scheduling	

Vectorize instructions	
•  Execute each 32x	
•  Amortize instruction fetch & decode	



Streaming Vector Processor 
Simplify	
•  No out-of-order, branch 

prediction, etc.	
•  Many ALUs and 

registers in saved space	
	
Fast context switch	
•  100,000s of threads	
•  Swap during memory 

latency	
	

Special stream in/out path	
•  Bypass cache	
•  Self-synchronized by scheduling	

Vectorize instructions	
•  Execute each 32x	
•  Amortize instruction fetch & decode	

Implications:	
	
•  Explicit memory load is slow	
•  Explicit memory store is very slow (and unsafe)	
•  Stack is slow (affects context swap)	
•  Pointers are slow (most data are in registers!)	
•  Computed array indexing is slow (same as above)	
•  Divergence is slow (splits vectors)	
•  Everything else is very fast!	



HLSL/GLSL 
•  Designed to prevent writing slow programs	

–  Stack is slow → no recursion, fully-inlined program	
–  Pointers are slow → no pointers	
–  Memory store is slow → hard to use	
–  Memory load is slow → abstract through “texture” functions	
–  Abstractions might hide slow code → only C-level features	
	

•  Result: awkward, but fast	
	
•  You can use other languages for GPU programming (CUDA, 

OpenCL, C++ -> SPIRV, etc.)	



GLSL Syntax Tips 
•  “in out” = C++ &	
•  “const” = C++ “static const”…must be compile-time evaluable	
•  Use #define instead of typedef	
•  Maximum single-precision float and int (no double or long)	
•  No heap allocation	
•  No Doxygen support	



GLSL Inlines Everything 
•  Small, fixed-length loops unroll completely	
•  Branches on compile-time constants are free	
•  Dead code is free	
•  No pointers	
•  No exceptions	
•  No recursion allowed (but you can build your own slow stack)	
•  No function pointers (and no classes or methods, but you can use 

switch)	
•  No pointers + no recursion = no data structures except fixed-length 

array and struct	



GLSL Hidden Performance 
•  More registers = fewer threads = slower	
•  Float is much faster than int!	
•  Some intrinsics are very fast:	

–  normalize()	
–  dot()	

•  Multiply-add is a single operation	
•  Branches and loops have high overhead and create divergence	

–  But conditional assignment is inexpensive!	
•  Computed array indices force the array out of registers into cache (slow!)	



GPU SHADER LAUNCH 



Shader Launch Modes 
•  “Compute” mode	

–  Iterate over 1D, 2D, or 3D rectangular bounds	
–  Like G3D::Thread::runConcurrently on CPU	

•  “Graphics” mode	
–  Iterate over an indexed triangle list’s vertices, geometry, and pixels	
–  Special depth test support for pixels	
–  Automatic clipping to 3D frustum	
–  Some other exotic cases (tessellated patches, stencils, paths, axis-aligned 

rectangles)	



G3D Syntax 
// Prepare for the 2D rectangle	
rd->push2D();	
	
// Pass arguments from the CPU to the GPU	
Args args;	
args.setUniform(“center”, Point3(x, y, z));	
args.setUniform(“environmentMap”, environmentMap, Sampler::cubeMap());	
…	
	
// Set the indexed triangle list to two triangles covering the near plane	
args.setRect(rd->viewport());	
	
LAUNCH_SHADER(“mycode.pix”, args); 	
rd->pop2D();	

for a pixel shader on a full-screen rectangle in “Graphics” mode	



THE RASTERIZER 


