
CS371 Tools Overview

Updated September 13, 2012

In CS371 you’ll use a development environment similar to what you would encounter in profes-
sional development. It comprises a C++ build system, revision control, a debugger, documentation
tools, profiling tools, and many software libraries. Most industry developers use commercial, visual
integrated development environments (IDEs) like Visual Studio. In class we favor command-line
open source tools . Learning these tools may help you understand the fundamentals better than the
visual environments. What you learn with these tools is directly applicable to the visual environ-
ments, and they are always available to you for future courses and work environments because they
are that are cross-platform and freely available.

This document briefly introduces the software development environment for CS371. It is intended
as an introduction and quick reference guide. Refer to the online manuals and guides [van Heesch
2010; Roberts 2009; Collins-Sussman et al. 2008; McGuire 2012], OS X man pages, and built-
in help commands for more detailed information. I’m intentionally telling how to find information
rather than giving you the information directly so that you will learn to work with reference materials
and external resources.

Contents

1 Subversion 2
1.1 Revision Control . 2
1.2 Commands . 3
1.3 Starting Each Week . 4

2 iCompile 5
2.1 Directory Organization . 5

3 Coordinate System 6
3.1 3D . 6
3.2 World and Object Space . 6
3.3 Rotations . 6
3.4 2D . 6
3.5 Units . 6

4 Doxygen 7
4.1 Markup . 7
4.2 Style . 7
4.3 Links . 8
4.4 Equations . 8

5 G3D 9

6 Working from Home 10

Williams College CS371 Fall 2012 | Prof. McGuire | TOOLS OVERVIEW

1 Subversion

1.1 Revision Control
Subversion is a revision control system. Revision control maintains a server-side repository (i.e.
database) of the files in your project. You can check out (i.e., download) a copy of these files to
your local machine, into what is often called a workspace. You then develop with the local copy
and commit your changes back to the server, which merges your changes into the files already
there. Commits usually occur at the end of your programming session or after completing some
milestone. Because commits merge files, you can modify your program on multiple computers and
you individual changes will be integrated at the server. Multiple programmers can also modify files
from the project simultaneously and independently, and then rely on the merge to integrate them.
Once you have a workspace, you can also update it by merging any changes from the server side
made since check out time into your workspace. Most software today, both in research and industry,
is developed using revision control to manage project files. That is because of the many advantages
it offers, including:

1. History–you can jump back to the state your project had at any previous commit point. This
is particularly useful if some new change introduced a bug or accidentally removed a compo-
nent.

2. Asynchronous development–multiple developers can work on the same code base without
tightly coordinating.

3. Multi-computer development–you can use the fast local disk for work and rely on revision
control for moving files between computers, rather than explicit copying which is prone to
error.

Revision control has drawbacks as well. To avoid these, adopt the following practices:

1. Always add new files to the system as soon you create them. Adding does not commit.

2. Always commit before leaving a machine, and then update to see if you forgot to add new
files.

3. Update and build every time you sit down at a computer. This will alert you if the build is
broken before you make new changes.

4. Always run svn status in your project root before you log out to make sure you checked
everything important in.

5. Work in small increments, committing frequently.

6. Only commit working builds. Use if (false) or comments to temporarily disable broken
code if you have to end your programming session at a specific time.

7. Avoid editing the same files, and especially the same methods, simultaneously with your
partner. The system cannot merge changes to the same line of code and changes within the
same method are likely to merge but risk incorrect semantics.

8. Never copy or move directories that are under revision control.

http://graphics.cs.williams.edu/courses/cs371 2

http://graphics.cs.williams.edu/courses/cs371

Williams College CS371 Fall 2012 | Prof. McGuire | TOOLS OVERVIEW

9. Never modify the .svn directories.

10. Never add generated files (e.g., executables, generated documentation) to the repository.

11. Avoid adding large binary files (e.g., 20 MB movies, PSD files), and especially avoid chang-
ing such large binary files because Subversion cannot merge these, so they consume tremen-
dous server space and slow down the system.

1.2 Commands

You will access Subversion through the svn command-line program. Issue subversion commands
by running svn with arguments specifying the operation you would like to perform and any options
that command requires. The major commands that you will use are:

svn co source-URL

svn update

svn add filename

svn commit -m " log message "

svn export [--force] source-URL dest-dir

svn status

To tell Subversion to ignore a file, use:

svn propset svn:ignore file-pattern containing-dir

For, example,

svn propset svn:ignore log.txt data-files

Refer to the Subversion manual [Collins-Sussman et al. 2008] or use the svn help command
for other useful commands and for the details of these.

When you commit you must specify a log message. Make this a one sentence description of your
changes. These will help you if you need to revert a change and will help your partner (in future
projects) to understand what new code has come in with an update.

You can combine svn with other Unix commands for some powerful effects. For example, to
recursively descend through your source tree and add all files to Subversion except for generated
and temporary ones, use the command (all on one line):

find . | sed -e "/\/build\//d" -e "/\/build$/d" -e "/.svn/d"
-e "/\/tmp$/d" -e "/\/tmp\//d" -e "/\/\.ice-tmp$/d"
-e "/\/\.ice-tmp\//d" -e "/˜$/d" -e "/\/log.txt$/d"
-e "/\/g3d-license.txt$/d" -e "/ˆ\.$/d" | xargs svn add

http://graphics.cs.williams.edu/courses/cs371 3

http://graphics.cs.williams.edu/courses/cs371

Williams College CS371 Fall 2012 | Prof. McGuire | TOOLS OVERVIEW

1.3 Starting Each Week
For each project I will create a Subversion module for you. This will either have your username or
an assigned team name in the directory name.

Your workspace will initially be an empty directory. For most projects, you’ll quickly fill this by
copying your solution (or another student’s) from the previous week. You can’t just copy the di-
rectory structure of another project directly because Subversion maintains its state in subdirectories
named .svn. If you copy a .svn subdirectory, you will corrupt the state of your working copy.
Copying would also bring along generated files like executables that you don’t want.

Use the Subversion export operation to export a previous solution from the server and strip its
revision control data. You can then check this back in as a different project. If your username was
ewilliams and you were working on Project 1, the commands for this process would be:

cd /local-scratch
svn co svn://graphics-svn.cs.williams.edu/371/1-Meshes/meshes-ewilliams meshes-ewilliams
svn export --force svn://graphics-svn.cs.williams.edu/371/0-Cubes/ewilliams-cubes meshes-ewilliams
cd meshes-ewilliams
svn add *
svn commit -m "Exported from previous week"

http://graphics.cs.williams.edu/courses/cs371 4

http://graphics.cs.williams.edu/courses/cs371

Williams College CS371 Fall 2012 | Prof. McGuire | TOOLS OVERVIEW

2 iCompile
iCompile is an automated build system for C++ on Linux and OS X. It provides similar functionality to tools like Make, MSBuild, and
Ant. What makes iCompile unique is that it generally requires no configuration. You just run icompile with no options in the
root directory of your project and it automatically determines dependencies, directories, and compiler and linker options and builds your
program. You can also use it to build documentation, shared and static libraries, and standalone OS X distributions (.dmg files).

iCompile is implemented as an open source Python script that is installed as part of the G3D distribution. Runicompile --help
to see a full list of options. Some of the most common are:

--run [... args ...] If compilation succeeds, run the program. Arguments can be passed on after the run flag.

--gdb [... args ...] If compilation succeeds, run the program under a debugger.

--clean Delete all generated files.

--doc Generate documentation from Doxygen markup.

--opt Build an optimized executable.

You can customize iCompile’s behavior by editing ˜/.icompile and the project’s ice.txt file.

2.1 Directory Organization
iCompile can work with almost any directory structure. However, it treats certain directory names specially to support common devel-
opment needs. For CS371, I want you to take advantage of this by structuring all of your projects with the following subdirectories:

(project root) The mainpage.dox and journal.dox files

source All of your source code, divided among .h and .cpp files

data-files Any runtime data required by your program that is not also in the G3D data distribution.

doc-files Any data required for your report or documentation, such as images and videos.

journal Any data required for your development journal that isn’t also needed for your general docu-
mentation. This usually contains a list of dated screenshots and isn’t used on the first project.

graveyard Files that you want to keep around for your own reference but do not want me to evaluate or the
build scripts to process.

You must use the exact naming scheme described here, including capitalization, to ensure that the scripts I use to process the projects
work correctly. The naming scheme is part of the specification for each project and you will lose points for varying from it!

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371

Williams College CS371 Fall 2012 | Prof. McGuire | TOOLS OVERVIEW

3 Coordinate System
Every 3D system imposes its own coordinate system conventions. These are arbitrary–everything that you’ll learn in this course works
equally well in any coordinate system, and it is straightforward to convert between them.

3.1 3D
In the 3D coordinate system used in this course, the x-axis increases to the East, the y-axis increases vertically upwards, and the z-axis
increases to the South.

This is a right handed coordinate system. If you point your right hand in the direction of the x-axis and curl your fingers towards
the y-axis (which necessitates having your palm upwards), then your thumb will be pointing along the z-axis. This works for any cyclic
rotation of the order of axes, e.g., x-y-z has the same relationship as y-z-x.

3.2 World and Object Space
We distinguish between the absolute world-space (a.k.a. global) coordinates in which we will define the entire world (a.k.a. scene) and
the relative object-space (a.k.a. body-space, local) coordinates used to define parts of an object relative to the reference frame of that
object. For example, I might position a chessboard relative to the center of the scene, but the pieces on the board relative to the board
itself.

By convention we will generally define object space coordinate systems in a common way. For objects that have a clear “top,” we
will make their object space y-axis point upward. For objects that have a natural “facing” direction, such as cars and people, we will
define their object space z-axis to point out their back and the x-axis to point to their right. Thus objects look along their negative z-axis.

3.3 Rotations
The canonical rotations about the x-, y- and z-axes are called pitch, yaw, and roll. These also follow a right hand rule: if you point your
thumb in the direction of the axis of rotation, your fingers curl in the direction of increasing angular measure.

3.4 2D
In the 2D coordinate system used in this course for images and the screen, the origin is at the upper-left corner. The x-axis increases to
the right and the y-axis increases downward. The reading discusses the historical origin if this coordinate system.

Image space coordinates are sometimes expressed in pixel side-lengths, e.g., position (100, 120) on a 1920×1080 image. At other
times they are in normalized so-called texture coordinates, in which (1, 1) is the lower-right corner of the image regardless of its
resolution or aspect ratio. Texture coordinates are often expressed using the variables (u, v) or (s, t) to distinguish them.

3.5 Units
We use SI units (e.g., meters, seconds, Joules, Watts), which include radians as the unit of planar angle measure.

http://graphics.cs.williams.edu/courses/cs371 6

http://graphics.cs.williams.edu/courses/cs371

Williams College CS371 Fall 2012 | Prof. McGuire | TOOLS OVERVIEW

4 Doxygen
Write entry point (class, method, function, macro, enum, typedef) documentation and final report as Doxygen comments inside your
C++ header (.h) files and standalone .dox files, all stored in the source directory.

Put images and other files referenced from your documentation in the doc-files subdirectory. iCompile will copy them when you
build documentation.

Like HTML and LATEX, Doxygen is a markup language that you use to edit a document. To actually view the document, you must
compile it. To compile the document, execute the command doxygen with no arguments in the directory containing a file named
Doxyfile. The Doxyfile that you will use for all projects is provided on the course webpage. You never need to modify it, although
you may if you wish.

The following is a brief overview of some of the features of Doxygen. Read the manual [van Heesch 2010] for full details. Sharing
markup tips and helping classmates with formatting is one way to earn class participation, so please collaborate on this and let
me know at the end of your report if you gave or received assistance.

4.1 Markup
Doxygen comments begin with /** and end with */. They apply to the entry point immediately following the comment. Only the
markup in your header files and in .dox will affect your generated documentation.

An example of how to document a class is:

/** Represents a direction and magnitude in 3D. */
class Vector3 {
public:

/** Distance along the x-axis. */
float x;

...

/** Magnitude of the vector. */
float length() const;

};

You may have exactly one \mainpage markup command throughout your program. This declares that the containing comment
forms the index.html page that will be your report. Put this in a .dox file in the source directory, e.g.,

/**
\mainpage

Project 0: Cubes

Ephram Williams

\section outline Code Outline
App::onInit loads the scene...

\htmlonly
<center></center>
\endhtmlonly

\thumbnail{result1.jpg}
...

*/

4.2 Style
Doxygen markup commands begin with a backslash. Some useful ones are\sa,\brief,\param,\author, and\return.
Doxygen also allows creation of nested lists using leading dashes and hash marks, and some HTML commands work as well. You can
escape to raw HTML by creating a \htmlonly...\endhtmlonly block. See the manual for more markup commands.

http://graphics.cs.williams.edu/courses/cs371 7

http://graphics.cs.williams.edu/courses/cs371

Williams College CS371 Fall 2012 | Prof. McGuire | TOOLS OVERVIEW

4.3 Links
Doxygen will automatically hyperlink URLs and the names of entry points (e.g., methods, functions, classes, and variables) in your
project. Make sure to check these links in your report–mispellings and incorrect capitalization can break them. Compare the G3D
header source code and the generated documentation for a page, and remember that you can mine the G3D source for examples of how
to achieve specific effects.

4.4 Equations
Within Doxygen comments, you can format standalone equations using LaTex markup inside blocks bracketed by \f[and \f]. For
inline equations, use \f$ to both begin and end the block. As an example, the following Doxygen source:

\f[\int_{0}ˆ{2\pi} \!\! \int_{0}ˆ{\pi/2} \cos \theta ˜ d\theta ˜ d\phi = \pi \f]

Embeds this equation in your document: ∫ 2π

0

∫ π/2

0
cos θ dθ dφ = π

I recommend Andrew Roberts’ LaTex math tutorial [Roberts 2009] if you are unfamiliar with LATEX.
If your LATEX code contains an error, Doxygen may cache the erroneous result, which makes it hard to debug. When you suspect that

this is happening, use icompile --clean to clear the cache.

http://graphics.cs.williams.edu/courses/cs371 8

http://graphics.cs.williams.edu/courses/cs371

Williams College CS371 Fall 2012 | Prof. McGuire | TOOLS OVERVIEW

5 G3D
The G3D Innovation Engine is an open source C++ library for 3D graphics on Windows, Linux, and OS X. It is used in commercial
games, research papers, military simulators, and university courses. G3D supports hardware accelerated real-time rendering using
OpenGL, off-line rendering like ray tracing, and general purpose computation on GPUs.

No 3D developer programs directly on the C++ standard library and OpenGL or DirectX. They are at too low of a level and don’t pro-
vide necessary facilities such as scene management, image I/O, GUIs, and platform abstraction. Instead, programmers adopt “engines”
packaged as libraries that provide those features.

G3D is similar to the 3D engines that you would find in a film or game company, but it has been tailored for research and education.
In particular, G3D has a modular design that allows you to replace components with ones that you built yourself, and because the full
source code is available it provides about 200k lines of sample code (in addition to the samples that are in the documentation).

See the latest version of the G3D manual [McGuire 2012] for detailed information about the library.

http://graphics.cs.williams.edu/courses/cs371 9

http://graphics.cs.williams.edu/courses/cs371

Williams College CS371 Fall 2012 | Prof. McGuire | TOOLS OVERVIEW

6 Working from Home
I only support working on the department Mac computers in TCL 216 and the Special Purpose Lab using Emacs, gdb, and g++/iCompile
with G3D and the libraries it includes.

However, you are permitted to use any development tools (such as Xcode), computer (such as your own laptop), or operating system
(such as Windows) in this course. Beware that if you run into trouble, I’m probably going to tell you to use the CS department computing
environment.

G3D 9.00 beta for Windows / Visual Studio 2010 and OS X / gcc is available from the G3D Subversion server (which is different
than the course subversion server). See http://g3d.sf.net for information. Make sure that you use the 9.00 top of tree built from
source, not the public release 9.00 beta binaries. Installation and use instructions are included with the library

The Visual Studio 2010 Express IDE for Windows is a free download from Microsoft. The OS X developer tools including gcc are a
free download from Apple.

The course subversion server is available outside the department and from off campus. Beware that deadline timestamps are based
on the server’s clock, not your client machine’s clock.

G3D Windows and OS X are 100% compatible. For my own research I move the same code between Windows and OS X on a daily
basis. So you should be able to move fluidly between IDEs and operating systems on the same project.

References
COLLINS-SUSSMAN, B., FITZPATRICK, B. W., AND PILATO, C. M. 2008. Subversion complete reference. In Version Control with

Subversion. O’Reilly, ch. 9. http://svnbook.red-bean.com/en/1.5/svn.ref.html. 1, 3

MCGUIRE, M., Ed. 2012. The G3D 9.00 beta Manual. September. http://graphics.cs.williams.edu/courses/
cs371/f12/G3D/manual. 1, 9

ROBERTS, A., 2009. Getting to grips with Latex - Mathematics, December. http://www.andy-roberts.net/misc/latex/
latextutorial9.html and http://www.andy-roberts.net/misc/latex/latextutorial10.html. 1, 8

VAN HEESCH, D., 2010. Doxygen 1.7.1 manual. http://www.stack.nl/˜dimitri/doxygen/manual.html. 1, 7

http://graphics.cs.williams.edu/courses/cs371 10

http://g3d.sf.net
http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://graphics.cs.williams.edu/courses/cs371/f12/G3D/manual
http://graphics.cs.williams.edu/courses/cs371/f12/G3D/manual
http://www.andy-roberts.net/misc/latex/latextutorial9.html
http://www.andy-roberts.net/misc/latex/latextutorial9.html
http://www.andy-roberts.net/misc/latex/latextutorial10.html
http://www.stack.nl/~dimitri/doxygen/manual.html
http://graphics.cs.williams.edu/courses/cs371

Index

.dox file, 7

.svn, 3

check out, 2
commit, 2
coordinate system, 6

doc-files, 7
Doxyfile, 7
Doxygen, 7

G3D, 9, 10

header file, 7
HTML, 7

iCompile, 5, 7

LaTeX, 7

object-space, 6

pitch, 6

repository, 2
revision control system, 2
right handed, 6
roll, 6

scene, 6
Subversion, 2

texture coordinates, 6

update, 2

Visual Studio, 1, 10

Windows, 10
workspace, 2
world-space, 6

Xcode, 10

yaw, 6

	Subversion
	Revision Control
	Commands
	Starting Each Week

	iCompile
	Directory Organization

	Coordinate System
	3D
	World and Object Space
	Rotations
	2D
	Units

	Doxygen
	Markup
	Style
	Links
	Equations

	G3D
	Working from Home

