CS 371 Project 2:
Eye Rays

Figure 1: Crytek’s model of the atrium of the Sponza palace is a standard
benchmark scene for 3D rendering algorithms. By the end of this lab, you’ll be
able to produce images of it yourself from first principles, without relying on the
OpenGL/G3D renderer.

1 Introduction

Ray casting is one of the core techniques for approximating photorealistic render-
ing. This algorithm casts a ray through each pixel to find the surface that colors that
pixel. The most straightforward variant, which you will implement in this project,
then shades the surface by iterating over the light sources. It was first investigated
by Appel and others in the late 1960’s, and quickly evolved into Whitted’s ray
tracing algorithm. Ray casting was also the basis for most real-time rendering un-
til fairly recently. Many 3D games in the early 1990’s such as Wolfenstein, Doom,
Heretic, Duke Nukem 3D, and Star Wars: Dark Forces explicitly cast rays. Other
games used a variant on ray casting called rasterization with direct illumination
well into the 2000’s. Later projects in this class will explore both ray tracing and
rasterization using the physically-based framework that you build this week.

The previous two projects focused on modeling scenes and left the rendering to
a simple black-box renderer built on OpenGL. In this project, you’ll augment that
preview with your own renderer so that you understand the entire system, from
the data files that describe the scene to the way the value of an individual pixel is
calculated. The images that your own program generates this week should exactly
match the ones produced by the OpenGL preview renderer!

CS3712010 | PROJECT 2: EYE RAYS

2 Table of Contents

1 Introduction 1
2 Table of Contents 2
1 Introduction 2
2 TableofContents 2
Oh no, infinite recursiono 2
3 Schedule 2
4 Rules/Honor Code 3
5 Teams 3
6 Individual Checkpoint 4
7 Team Checkpoint 4
8 Specification 5
81 Report e 5
8.2 RaAYTIACEY . . v v v i it e it e e e e e e e e 7
9 Implementation Advice 9
9.1 Getting Started 9
9.2 RaAYTTraACET.CPP « v « v v v e e et e e e e et e e e e e 9
9.3 TheRendering GUI 11
9.4 Functors (Closures) 13

3 Schedule

Out: Tuesday, September 18
Checkpoints: Thursday, September 20, 1:00 pm
Due: Monday, September 24, 12:00 pm

This is an easy project for teams of three or four people. As with other projects,
try to quickly cover the entire specification with stubbed out methods and provi-
sional report text before refining any one area.

As a reference, my solution required about 260 statements and 350 comment
lines, including the report Doxygen comments (as reported by iCompile), plus sev-
eral data files. Note that I always line-wrap my comments with M-q; if you don’t
your comments may look ugly in my editor and they will report as many fewer
lines. If your codebase looks like it is going to be more than 1.5 x larger or smaller
than my solution, come talk to me because you may be on a bad path.

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS3712010 | PROJECT 2: EYE RAYS

4 Rules/Honor Code

You are encouraged to talk to other students and share strategies and programming

techniques. You should not look at any other student’s code for this project. You

may look at and use anyone’s code from previous projects, with their permission.
During this project, you are not permitted to look at the G3D rayTrace sample

program.

5 Teams

http://graphics.cs.williams.edu/courses/cs371

red: Lucky, Alex, April

orange: Greg, Jonathan, Donny
yellow: Owen, Qiao, Michael

dan: Dan E., Dan F,, Dan S.

cyan: Lily, Tucker, James W.

blue: Josh, Nico, Scott P-S., Scott S.

ultraviolet: Parker, Cody, James R.

http://graphics.cs.williams.edu/courses/cs371

CS3712010 | PROJECT 2: EYE RAYS

6

Individual Checkpoint (1pm Thu.)

Submit on paper...

1. Write one paragraph describing a project that you’re considering for your

mid-term or final. You may include pictures. Discuss how many people you
think it would take to accomplish this and what you’ll need to learn between
now and then. Describe how you will present it—-what is the visual takeaway
or experience that the audience will have?

. Implement I_scatteredDirect in legal C++ code (N.B. you won’t be

able to test it). Be very clear about the units for each step in comments and
using appropriate types such as Biradiance3, Radiance3, Power3, etc.

. Derive the intersection of ray P + wt with the cylinder centered at the origin

that circles the ¢ axis and extends from y = 1 to y = —1, with radius r in the
xz plane. Assume that the cylinder has no top and bottom-it is like a toilet
paper tube. Make the cylinder one-sided, so that rays that miss the outside
never hit it (i.e., from the origin, it is invisible). Compute the normal to the
point hit if there is an intersection. You will probably want to mix math and
pseudocode in your final writeup.

7 Team Checkpoint (1:45pm Thu.)

1. Submit on paper a schedule describing your team’s plan for completing the

specification. This should list tasks that are individually no longer than 2
hours. Each task should have a team member’s name next to it (or multiple
ones, if they are pair programming), and be tied to a concrete time and date
during which you anticipate the work will be performed.

You may use a simple list, a calendar view, or a Gantt chart. I favor the latter
for complex projects because it allows you to express dependencies.

. Submit a printout of your report draft, and commit the relevant interfaces

to SVN. The report should be the bare bones of everything described in sec-
tion 8.1, but with a fully-fleshed out architectural overview. By reading the
architectural overview and follow links from it to the referenced methods, 1
should be able to understand the structure of your program and the interfaces
that the team members will later implement.

I do not expect any implementation at this point. You are of course free to
change your interfaces at any point during the project.

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS3712010 | PROJECT 2: EYE RAYS

8 Specification

Implement a program with the following features: Although we're implementing ray
casting this week, next week

we’ll be ray tracing, which is
1. A class named RayTracer that: why we are naming the class

RayTracer.

(a) Supports at least the interface described in Section 8.2

(b) Renders images by the ray casting algorithm (cast one primary ray per
pixel into the scene)

(c) Can operate in both single-threaded and concurrent multi-threaded modes.

(d) Searches for intersections using both exhaustive array and pruning tree
(G3D: : TriTree) search, and can switch between them at run time.

(e) Computes direct illumination under point lights as described in Equa-
tion 1:

Let & = S*(Y; — X)
Letr; = [|Y; — X]|

®
Let Bj = —2
et b; Amr?
N-1
Lo(X,00) = > [By @i - 2] fxa(@1,@)] (1)
j=0

where light with index 0 < j < N is described by power ®; and position Y7,
X is the intersection point, 72 is the shading normal at the intersection, and
W, points back along the ray.

2. A scene containing the Cornell box with a single, non-shadow casting omni
light source and no “environment” light.

3. A scene containing the Crytek Sponza atrium from a viewpoint and lighting
conditions that approximately match Figure 1. Specifically, there should be
a single, non-shadow casting omni light.

4. User interface functionality comparable to that shown in figure 2.

5. Create the documentation reports specified in section 8.1.

8.1 Report

Write an appropriately-formatted report that covers the following topics:

1. An architectural overview of your program.

2. Discuss significant design choices that you made, and argue why your choices
were good for this project.

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371

CS3712010 | PROJECT 2: EYE RAYS

LX) 30 - —
Scene Enity Ray Trace Camera Conieol
xy280 (00, 10, 48), 3600, 00 [A]w] 7,
Comell Box oA Name [<none : Resoluion [640x 360 2
 Multthreaded
~ Wreframe & Control pont: O @ Use Tree
Time 0000000 s Trianges [36

CFrame: fromXYZYPRDegrees(O, Lights T
Add new)[R

BuidTime | 0268936 ms.
A with final interval (@) automai
¥ Loop with final interval &) automatic TraceTime [65427065 s

Sun 10:58:19 pm
(640x380 rgb321)

Figure 2: One possible user interface for the ray casting program.

3. Discuss any known errors in your program, and how you identified and at-
tempted to correct them.

4. Show pictures of the following scenes rendered with ray casting and by the
preview renderer, side-by-side:

(a) The Cornell Box scene
(b) The Sponza scene

(c) A visually compelling scene of your own design. This can re-use ele-
ments from previous assignments.

5. Questions. (To calibrate your level of effort, all of these together should take
you more than 10 minutes and less than one hour to complete.)

(a) The ray casting program that you wrote assumed that the only signif-
icant incident light was directly from the sources. Describe the errors
contributed by this approach, a scene for which this error is significant,
and briefly propose an algorithm for incorporating indirect light that
has scattered from other surfaces.

(b) Without performing a formal experiment, describe the performance im-
pact of multithreading. Is it what you expected?

(c) Briefly speculate on how TriTree might work. You may research this
or read the source code, but I’'m more interested in your own ideas about
how you would design a data structure for ray-triangle intersection.

(d) Briefly describe the different ways that you would have to change your
program to incorporate another type of primitive, such as a true sphere.
Consider everything from the scene data files through the shading algo-
rithms.

6. Feedback. Your feedback is important to me for tuning the upcoming projects
and lectures. Please report:

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS3712010 | PROJECT 2: EYE RAYS

(a)

(b)

(©)

(d)

How many hours you spent outside of class on this project on required
elements, i.e., the minimum needed to satisfy the specification.

How many additional hours you spent outside of class on this project
on optional elements, such as polishing your custom scene or extreme
formatting of the report.

Rate the difficulty of this project for this point in a 300-level course as:
too easy, easy, moderate, challenging, or too hard. What made it so?
What did you learn on this project (very briefly)? In addition to the

algorithm, consider the workflow lessons, programming and design ex-
perience, and the process of thinking about questions.

8.2 RayTracer

Your RayTracer class should follow the interface below to ensure compatibility
between each other’s projects going forward. You may extend the interface as you
see fit. Please re-type this code to ensure that at least one person on your team
has read it closely. As with all code in your program, you are responsible for
understanding, documenting, and debugging this code.

#ifndef
#define

RayTracer_h
RayTracer_h

#include <G3D/G3DAll.h>

class RayTracer : public ReferenceCountedObject {

public:

class Settings {

public:
int width;
int height;
bool multithreaded;
bool useTree;

}i

Settings () ;

class Stats {

public:
int lights;
int triangles;

/** width x height =/

int pixels;
float buildTriTreeTimeMilliseconds;
float rayTraceTimeMilliseconds;
Stats () ;
}i
protected:

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS3712010 | PROJECT 2: EYE RAYS

/** Array of random number generators so that each threadID may
have its own without using locks. =/
Array< shared_ptr<Random> > m_rnd;

// The following are only valid during a call to render ()

shared_ptr<Image>
shared_ptr<Lighting>

m_image;
m_lighting;

m_camera;
m_settings;
m_triTree;

shared_ptr<Camera>
Settings
TriTree

RayTracer();

/+* Called from GThread::runConcurrently2D(),

*/
int vy,

in traceAllPixels()
void traceOnePixel (int x,

/*% Called from render ().
void traceAllPixels (int numThreads) ;

/%%
\param
\param
\param anyHit If true,

not the first
\return The surfel hit,
*/
shared_ptr<Surfel> castRay

The ray in world space

Writes to m_image.

return any surface hit,

which is invoked

int threadID);

*/

maxDistance Don’t trace farther than this

even if it is

or NULL if none was hit

(const Rayé& ray,
float maxDistance = finf (),
bool anyHit = false) const;
Radiance3 IL_scatteredDirect
(const shared_ptr<Surfel>& surfel,
const Vector3é& wo,
Randomé& rnd) const;

public:

static shared_ptr<RayTracer> create();

/++ Render the specified image */
shared_ptr<Image> render

(const Settingsé&

const Array< shared_ptr<Surface> >&
const shared_ptr<Lighting>&

const shared_ptr<Camera>&

Statsé&

}i

http://graphics.cs.williams.edu/courses/cs371

settings,
surfaceArray,
lighting,
camera,
stats);

http://graphics.cs.williams.edu/courses/cs371

CS3712010 | PROJECT 2: EYE RAYS

‘#endif

9 Implementation Advice

9.1 Getting Started

Note that this week I am not specifically requiring you to extend the Meshes project,
although you are welcome to. I chose a different route, myself. I began this project
with an empty directory. I ran icompile in that directory with no arguments, and
when prompted, told it that I wanted a new G3D starter project. This built a basic
GUI for me that handled, and provided some convenient scenes, like Sponza and
the Cornell Box. I then deleted the “Alpha Base” scene, which contains animation
that I wasn’t prepared to deal with this week.
The Subversion command to check out your project this week is:

svn co svn://graphics—-svn.cs.williams.edu/371/2-EyeRays/eyerays—<teamname>

in which you should replace <teamname> with your team name.

9.2 RayTracer.cpp

I provide a partial implementation below to help get you started. As always, you're
responsible for understanding and documenting this code—and fixing it if it (unin-
tentionally) contains bugs.

RayTracer::Settings::Settings ()
width(160),
height (90),
multithreaded (true),
useTree (false) {

ifdef G3D_DEBUG
// If we’re debugging, we probably don’t want threads by default
multithreaded = false;

endif

RayTracer::Stats::Stats ()
lights (0),
triangles (0),
pixels (0),
buildTriTreeTimeMilliseconds (0),
rayTraceTimeMilliseconds (0) {}

RayTracer::RayTracer () {

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS3712010 | PROJECT 2: EYE RAYS

m_rnd.resize (System: :numCores()) ;
for (int 1 = 0; i1 < m_rnd.size(); ++1i) {
// Use a different seed for each and do not be threadsafe
m_rnd[i] = shared_ptr<Random> (new Random (i, false));
}
}
shared_ptr<RayTracer> RayTracer::create() {
return shared_ptr<RayTracer>(new RayTracer());

shared_ptr<Image> RayTracer::render

(const Settingsé& settings,
const Array< shared_ptr<Surface> >& surfaceArray,
const shared_ptr<Lighting>& lighting,
const shared_ptr<Camera>& camera,
Statsé& stats) {

RealTime start;
debugAssert (notNull (lighting) && notNull (camera));

// TODO: store member pointers to the arguments
// so that they can propagate inside the callbacks

// Build the TriTree
start = System::time () ;
m_triTree.setContents (surfaceArray);
stats.buildTriTreeTimeMilliseconds =
float ((System::time () - start) / units::milliseconds());

// Allocate the image
m_image = Image::create(settings.width, settings.height,
ImageFormat: :RGB32F ()) ;

// Render the image
start = System::time();
const int numThreads =
settings.multithreaded ? GThread::NUM_CORES : 1;
traceAllPixels (numThreads) ;
stats.rayTraceTimeMilliseconds =
float ((System::time () - start) / units::milliseconds());

// TODO: Fill out other stats
shared_ptr<Image> temp (m_image) ;

// TODO: Reset pointers to NULL to allow garbage collection

return temp;

http://graphics.cs.williams.edu/courses/cs371

10

http://graphics.cs.williams.edu/courses/cs371

CS3712010 | PROJECT 2: EYE RAYS

void RayTracer::traceAllPixels (int numThreads) {
GThread: :runConcurrently2D(...);

shared_ptr<Surfel> RayTracer::castRay
(const Ravyé& ray,
float maxDistance,
bool anyHit) const {

// Distance from P to X
float distance (maxDistance) ;
shared_ptr<Surfel> surfel;

if (m_settings.useTree) {

// Treat the triTree as a tree
surfel = m_triTree.intersectRay(ray, distance, anyHit);

} else {

// Treat the triTree as an array
Tri::Intersector intersector;
for (int t = 0; t < m_triTree.size(); ++t) {
const Tri& tri = m_triTree[t];
intersector(ray, m_triTree.cpuVertexArray (), tri,
anyHit, distance);

surfel = intersector.surfel();

return surfel;

9.3 The Rendering GUI

Your RayTracer: : render method will take a relatively long time to compute an
image, perhaps several minutes. If you invoke it from App: : onGraphics3D, then
it will run every time that the screen needs to refresh. That will make it appear that
your program has crashed because it will be extremely slow. So you should only
invoke render when the user presses the “Render” button.

http://graphics.cs.williams.edu/courses/cs371

11

http://graphics.cs.williams.edu/courses/cs371

CS3712010 | PROJECT 2: EYE RAYS

I built the required GUI for this project by adding the following to App . h:

protected:
GuiDropDownList* m_resolutionList;
RayTracer::Settings m_rayTracerSettings;
RayTracer::Stats m_rayTracerStats;
public:

void onResolutionChange () ;
void onRenderButton () ;

and code including the following in App . cpp:

void App::onResolutionChange () {
TextInput ti(TextInput::FROM_STRING,
m_resolutionList->selectedValue () .text ());

m_rayTracerSettings.width = ti.readNumber();
ti.readSymbol ("x");
m_rayTracetSettings.height = ti.readNumber ();

void App::makeGUI () {

m_resolutionList = rtPane->addDropDownList
("Resolution", Array<std::string>("16 x 9", "160 x 90",
"320 x 180", "640 x 360", "1280 x 720"),
NULL, GuiControl::Callback(this, &App::onResolutionChange));
rtPane->addCheckBox ("Multithreaded", &m_rayTracerSettings.multithreaded);

You can time infrequent tasks by measuring the difference in G3D: : System: : time
calls. For tasks that run every frame the G3D: :Profiler and G3D: : StopWatch
classes are more appropriate, but you don’t need that on this project.

There are many ways to display your image on screen. You could convert the
CPU-image that you rendered into a GPU-image using one of the many G3D: : Texture
constructors, and then write code in App: : onGraphics2D that draws a rectangle
filled with that texture. For this approach, you may wish touse G3D: : RenderDevice: :push2D
and G3D: :Draw: :rect2D.

Alternatively, you can use the G3D: : GApp: : show method to create a pop-up
window with your image inside it (that’s what I did, since it was really easy;
see figure 2). That method just creates a new G3D::GuiWindow with a single
G3D: :GuiTextureBox inside it, so you could also create your own style of pop-
up window, or embed the display within another part of your Ul

The drawback of using the built-in G3D GUI controls to display your image is
that it is hard to add your own debugging handlers. For example, if you explicitly
render your own Ul in onGraphics2D, then you can write an onEvent handler
that detects mouse clicks on them. It is often handy when debugging a ray caster to

http://graphics.cs.williams.edu/courses/cs371

12

http://graphics.cs.williams.edu/courses/cs371

CS3712010 | PROJECT 2: EYE RAYS

launch a 1 x 1 window, i.e., single-ray, render job when the user clicks on a pixel.
This allows you to render the whole scene, and then set a breakpoint and re-cast the
ray through one pixel while watching it in the debugger. It is more challenging to
set up that kind of infrastructure if you are using a GUI control.

There are many ways to display the number of triangles in the scene. For exam-
ple, you can print on-screen using a G3D: : screenPrint f from onGraphics3D,
an explicit call to G3D: : GFont : : draw2D from onGraphics2D, create a disabled
G3D: :GuiNumberBox Or G3D: :GuiTextBox, Or create a G3D: : GuiLabel. AsS
with your other UI choices, you must decide how much you value ease of imple-
mentation, ease of use for the end-user, attractiveness, performance, and function-
ality. Mine looked like:

rtPane->addNumberBox ("Triangles", &m_rayTracerStats.triangles);

Remember to briefly describe and support your Ul choices in the report, just as
you would for your other implementation decisions.

9.4 Functors (Closures)

The functor design pattern is a C++ class that acts like a C++ function. They are
an approximation of the general programming language feature of a closure, which
is just a function that has a persistent parent environment in which to retain state.
A regular C++ function can retain state between invocations. Local variables
marked with the static keyword are initialized once, the first time that the func-
tion is invoked, and then retain their value on subsequent evaluations. This is conve-
nient for memoizing results, for example. However, it has several drawbacks. One
drawback is that the programmer has little control over the order in which variables
are destroyed when the program shuts down. Another drawback is that it is hard
for other parts of the program to access the state stored in these local variables.
C++ allows overloading of several operators. For example, we can write

Vector3 aj;
Vector3 b;

a = a + b;

because Vector3: : operator+ overloads the default + operator to work on vector3
as well as numbers. In addition to the expected arithmetic operators, some surpris-
ing operators can be overloaded. These include the dereference operator, —>, the
array operator, [], and the function application operator, (). This means that we
can create a class that supports the application syntax of a function. For example:

class FakeFunction {
public:

float operator () (int x, bool vy);
}i

FakeFunction f;
float z = £(3, true);

http://graphics.cs.williams.edu/courses/cs371

http://graphics.cs.williams.edu/courses/cs371

CS3712010 | PROJECT 2: EYE RAYS

Such a class is called a functor. Because it is a class, we can add member vari-
ables and other utility methods. That allows the “function” to retain state between
invocations, and for access to that state from other parts of the program. (This is
how you create a closure in C++).

The G3D::Tri::Intersector class that you will use in the ray caster is a
functor. It exposes the triangle and the barycentric coordinates of the closest inter-
section as public member variables. It provides additional information about the
intersection through some helper methods. It also has some member variables that
we won’t use in this project that control how the operator () works.

http://graphics.cs.williams.edu/courses/cs371

14

http://graphics.cs.williams.edu/courses/cs371

Index

®,5
wi, 5
@o, 5

App::onGraphics3D, 11

checkpoint, 4

closure, 13, 14
Cornell Box, 6
Cornell box, 5
CornellBox, 6

direct illumination, 1
Doom, 1

function application operator, 13
functor, 13, 14

G3D::Draw::rect2D, 12
G3D::GApp::show, 12
G3D::GFont::draw2D, 13
G3D::GuiTextureBox, 12
G3D::GuiWindow, 12
G3D::Profiler, 12
G3D::RenderDevice::push2D, 12
G3D::screenPrintf, 13
G3D::StopWatch, 12
G3D::System::time, 12
G3D::Texture, 12
G3D::Tri::Intersector, 14
G3D::TriTree, 5, 6

multithreaded, 7
multithreading, 6

operator(), 14

rasterization, 1

ray casting, 1, 5

ray tracing, 1, 5
RayTracer, 5
RayTracer::render, 11
report, 5

shading normal, 5
specification, 5
sphere, 6

Sponza, 5, 6

useTriTree, 7

	Introduction
	Table of Contents
	1 Introduction
	2 Table of Contents
	 Oh no, infinite recursion

	Schedule
	Rules/Honor Code
	Teams
	Individual Checkpoint
	Team Checkpoint
	Specification
	Report
	RayTracer

	Implementation Advice
	Getting Started
	RayTracer.cpp
	The Rendering GUI
	Functors (Closures)

