
CS 371 Project 1:

Meshes

Figure 1: An island from the in-development game The Witness (http://
the-witness.net/news/?p=459) implemented as a heightfield. The Wit-
ness is by Jon Blow, author of the award-winning indie title Braid. In this project
you’ll learn how to work with 3D data files and the indexed triangle mesh structure.
By the end you’ll be able to model a scene like this.

1 Introduction

1.1 Overview Tip: Read the report

question about irregular

heightfields in Section 4.1

before you start program-

ming. It requires some

thought and shouldn’t be

left until just before the

deadline.

The interior of an opaque object is never visible. Therefore we only need to model
the surface in order to render it. The indexed triangle mesh is one of the most
popular data structures for modeling 3D surfaces.

A 3D heightfield1 is a mathematical function y(x, z) from R2 to R. In other
words, one dimension is a function of the others. Heightfields frequently employed
in graphics as models of terrain, non-breaking waves, and small bumps on surfaces.
They can’t model features like bridges or tunnels in terrain, however one can aug-
ment a heightfield with additional models in the context of a scene to represent
those features. That is how most video games model their outdoor settings, as seen
for example in the development screenshot of The Witness in Figure 1. A height-
field can be represented as an indexed triangle mesh by displacing the vertices of a
regular grid in a single dimension.

Data-driven programming is a technique for pushing constants out of source

1A bit confusingly, this is quite reasonably called a 2D heightfield as well; and it is also occasion-
ally referred to as a 2.5D model!

http://the-witness.net/news/?p=459
http://the-witness.net/news/?p=459


CS371 2010 | PROJECT 1: MESHES

code and into data files that are read at runtime. It has several advantages over so-
called hard-coded constants that are embedded in code. Data files are interchange
formats that allow the use of different tools for creating and processing data. They
allow the same input to be used with many programs, and are a way of connecting
programs to each other. By working with standard data file formats, we can increase
the number of programs that our own can interact with and gain access to large
repositories of information. You’ve already written your first data-driven program:
most of the work in the Cubes lab last week was creating the data file, not writing
the program for the 3D rendering. Some of you created the data file using another
program...this is called procedural modeling, and is also an important technique.
You’ll note that the preprocess part of a scene file is also a little program inside
the data. Nesting code in data in code in data, etc. is a key technique for advanced
programming.

This week we’ll all extend the Cubes program to use a mixture of data-driven
and procedural modeling. We’ll continue to use the G3D .scn.any file format for
our scenes. This week we won’t load the stock cube.obj file, however. Instead,
we’ll create our own 3D indexed triangle meshes and save them in the Geomview
OFF file format [Geometry Techonologies 2010]. The OFF file format is relatively
obscure. I chose it because it is similar to more widely used formats but is much
easier to create and debug, especially since they are in plain ASCII text. In later
projects you will work with some mainstream extensible binary formats that follow
the same principles. As for most projects, you will use your solution code as the
starting point for the next project, so take care to structure the program in a flexible
manner and be sure to document your source clearly.

1.2 Schedule Tip: Project specifica-

tions are available on

Tuesday afternoons–if you

read them before class on

Wednesday, then you can

ask questions in lecture.

Out: Tuesday, September 11
Checkpoint: Thursday, September 13, 1:00 pm

Due: Monday, September 17, 12:00 pm

This is a moderately challenging, team programming project. You will imple-
ment the checkpoint independently and submit it on paper at the beginning of
lab. You will then collaborate with assigned partners and submit a single solution
to the full specification. I recommend completing the checkpoint a bit before the
deadline so that you have time to organize and set up your code repository as a
team before lab. That way we can use our time in lab more effectively.

Remember to track how much time you spend on this project outside class.
You’re required to include this in your final report.

As a reference, my solution required 230 statements and 300 comment lines
including the reports (as reported by icompile), plus several data files. If your
codebase looks like it is going to be more than 1.5× larger or smaller, come talk to
me because you may be approaching the problem in a suboptimal way.

http://graphics.cs.williams.edu/courses/cs371 2

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

2 Rules/Honor Code

Collaborate freely, but don’t show you solutions to anyone outside of your group.
You are encouraged to talk to other students and share strategies and program-

ming techniques. You should not look at any other group’s code for this project.
You may look at and even use anyone’s code from last week’s project, with their
permission.

This is the first team programming project of the semester. You and your partners
share a single Subversion repository. For this project, you should work together on
the major pieces of the project. For example, do not have one person implement the
cylinder while the partner implements the heightfield. That is because I designed
the tasks for this lab so that doing them in order guides you to the right solutions.
You should, however, divide the work of writing helper procedures, debugging,
or modeling different parts of the final scene. It is up to you to ensure that each
of you has an approximately equal workload and gains experience at equivalent
tasks. Remember that your grade depends partly on the correctness and clarity
of code written by your partners. I will choose a single C++ method to evaluate
as representative of your entire project’s code quality. So, you should review and
critique your partners’ code carefully.

I encourage you to share strategies and information about the file formats with
people outside the group. You can share any information related to this except for
the specific data files and code that you are required to submit. For example, you
may share a sample OFF file for a pentagon, but not for a cube. You should also
help one another with C++ and Doxygen syntax and with tips for debugging.

During this project, you are not permitted to directly invoke the following classes
and methods or look at their source code: G3D::Welder, G3D::MeshBuilder,
G3D::MeshAlg, and G3D::ArticulatedModel::loadHeightfield. You are
not permitted to leverage ArticulatedModel’s ability to directly load an image as a
heightfield when specified in a scene file. All source code in G3D, the textbooks,
or the Internet that is not prohibited is legal to use, but you should cite Internet
resources that you use to avoid plagiarism.

http://graphics.cs.williams.edu/courses/cs371 3

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

3 Individual Checkpoint

1. Manually create a data file data-files/cube.off that contains a 1 m3

axis-aligned cube centered at the origin. Use only an indexed triangle mesh
(i.e., no quadrilaterals). You’ll need to create a corresponding scene if you
want to test it using your program from last week. Print out the data file to
hand in.

2. Write pseudocode for a program that generates a cylinder in OFF format.
The radius, height, and number of edges on the side should all be variables.
Don’t worry about the exact interface for writing to files now. Print this out
or hand write it.

This checkpoint is worth 50% of your grade on the project.

4 Team Specification

Work in the following groups:

• alpha: Daniel F, Cody, Greg, Qiao

• beta: Scott P-S, Lily, Lucky, Daniel E

• delta: Nico, Tucker, James W, April

• gamma: Daniel S, Dylan, Jonathan, James R

• zeta: Scott, Donny, Michael

• omega: Owen, Josh, Alex
Tip: G3D is installed at

/usr/mac-cs-

local/share/cs371/G3D/

and is also available at

http://g3d.sf.net.

It includes sample

code...and the samples/s-

tarter project has many

of these features in it

already.

to implement the following by extending the Cubes project from last week:

1. Maintain a blog-like journal in Doxygen that always describes the latest state
of your project. This is the story of your project; the report is just the polished
conclusion.

(a) Maintain your journal text in journal.dox in the project root direc-
tory. I recommend just copying the journal.dox and mainpage.dox
files from the G3D starter project when you begin this week.

(b) Store all data files (which will be almost exclusively images, I expect)
referenced by the journal in the journal subdirectory. Note that the
journal will automatically link to any classes or methods that you de-
scribe.

(c) The newest entry should always be at the top and the oldest at the bot-
tom.

(d) Describe bugs that you encounter and how you are diagnosing / did
diagnose and fix them.

http://graphics.cs.williams.edu/courses/cs371 4

http://g3d.sf.net
http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

(e) Make liberal use of images inserted with the \thumbnail command.
You will probably find that when it is time to finish your report you can
just select some images that you’ve already made. Remember to put
short captions on the images or descriptions below them.

2. Add a checkbox to the GUI for toggling display of the wireframe.

3. Add a reload button to the GUI for reloading the scene. The GUI includes
the “reload” button and scene-select drop-down list.

4. Implement the cylinder-generating function in C++. Use one of
G3D::TextOutput, fprintf, or std::cout to write to the file; I prefer
the first option.

5. Write a procedure that generates a regular heightfield from a grayscale image
and saves it to an OFF file. Use Photoshop to draw the height field and
G3D::Image to load it in your program.

(a) Treat white as high and black as low in the input image.

(b) Parameterize the procedure on the input image filename, the vertical
axis scale, the scale of the horizontal axes, and the scale of the texture
coordinates.

(c) Put the vertex corresponding to the (0,0) pixel at (0,0,0) in world space.

(d) Have the image x-axis increase along the world-space +x-axis and the
image y-axis increase along the world space +z-axis.

(e) Assign texture coordinates to the vertices. Make (0,0) correspond to Tip: To debug height-

field texture mapping, cre-

ate a scene that assigns

the original height image

as the material.

the upper-left of the original image.

6. Create a visually-compelling scene containing a texture-mapped heightfield
and any other elements that you would like. Commit the scene file and any-
thing not in mac-cs-local that it needs to run to the data-files di-
rectory. Commit the source heightfield image that you used as well. Your
program should not generate the height field every time that it is run.

7. Create the documentation reports specified in Sections 3 and 4.1.

As always, you should remove unused code and data from your program. This
includes last week’s cube scenes and images. An exception is debugging and unit
testing code that you may need again in the future, which is acceptable to retain.

Note that the group part of making the actual program is only worth 50% of your
grade on the project. Don’t worry if your program isn’t perfect. Also, while it is
motivating to produce the final scene, balance the satisfaction that you receive from
that against your other responsibilities and the fact that it contributes a very small
amount to your total grade. It is great when students “hit it out of the park” on the
creative portion of the assignment, but I don’t expect or require you to do that.

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

4.1 Report
1. Show pictures of:

(a) A manually created cube

(b) A generated cylinder

(c) A top-view of a flat heightfield, showing the tessellation in wireframe

(d) A visually-compelling scene using your heightfield, and any other ob-
jects of your choice. You may turn off the wireframe outlines for this
shot to improve the appearance, and should choose appropriate lighting
and skybox values.

Figure 2: A “hand
crafted” cube.

Figure 3: A tessellated
cylinder.

2. Questions.

(a) How can you simulate a planar reflection, such as the island’s reflection
in the ocean from Figure 1, using only non-reflective models?

(b) Why are triangle meshes a popular modeling primitive compared to,
say, quadrilaterals, which would be more space efficient?

(c) The regular tessellation we used for heightfields is inefficient. It will
allocate the same number of triangles for flat portions of the heightfield
that need few triangles as for very hilly ones that need many to accu-
rately represent the shape. Briefly sketch an alternative algorithm for
computing a more efficient triangular tessellation for a given height-
field. Do not actually implement your algorithm. You may invent one
on your own or use external resources to discover existing algorithms.
If you describe an existing algorithm you must cite a reliable source2.
In either case, explain the algorithm enough that someone could figure
out the details and implement it from your description.

3. Feedback. Your feedback is important to me for tuning the upcoming projects
and lectures. Please report:

(a) How many hours did each of you spend on this project on required
elements , i.e., the minimum needed to satisfy the specification? In-
clude scheduled lab and time spent on the checkpoint. Give either one
number per student or a team average.

(b) How many additional hours did each of you spent outside of class on
this project on optional elements, such as polishing your custom scene
or extreme formatting of the report? Again, give either one number per
student or a team average.

(c) I intended this to be a moderately challenging project. Rate the diffi-
culty of this project for this point in a 300-level course as: too easy,
easy, moderate, challenging, or too hard. What made it so?

2Textbooks and scientific publications are considered reliable sources for computer science
knowledge. Encyclopedias and blogs are great for discovering ideas...for which you should then
track down a reliable source.

http://graphics.cs.williams.edu/courses/cs371 6

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

(d) I listed my learning objectives for this project on the web page. Briefly
describe what you actually learned in one paragraph or a bulleted list;
please highlight anything that doesn’t match my list.

(e) Rate the educational value of this project relative to the time invested
on required elements from 1 (low) to 5 (high).

5 Implementation Advice

Everything in this section is optional–you don’t have to follow my advice, or even
read it.

5.1 Teamwork
Three ways to program with partners are:

1. Pure pair programming: one person drives a computer while the others watch
carefully and makes suggestions or dictate code.

2. Side-by-side programming: each person sits at a separate computer at the
same time. Frequent commits and updates and constantly running communi-
cation allow them to synchronize their efforts.

3. Asynchronous programming: the partners divide tasks and work at different
times, relying on revision control to merge their work. In this model, one typ-
ically ensures that the project always compiles and runs before committing
to avoid “breaking the build” and slowing down the partner.

You’ll need to experiment with these throughout the semester to find which
works best for you. It will probably vary depending on who your partners are
and what the project is.

Review the Subversion best practices in the Tools handout from the first lab. In
particular, always:

1. update and test the build before you start working,

2. ensure that the build is functioning correctly before you commit, and

3. send your partners e-mail whenever you commit code.
Tip: Put effort into cre-

ating an effective work-

ing relationship. Beyond

the current project, your

reputation with your peers

and your class participa-

tion grade are influenced

by how you interact with

your partner.

The first practice helps you distinguish whether you or your partners broke something–
if it was your partners, you know to look at the revision control history or code that
they wrote rather than the code you added. The second practice helps avoid break-
ing the build on your partners. You may need to temporarily disable code that is
not compiling if you are out of time but can’t fix a problem. The third ensures that
your partners know when new updates are available, and what will happen if they
choose to update.

When pair programming, it is important that all partners share responsibility for
the actions on the computer even though only one is actively typing. The non-
typing partners should be thinking one step ahead so that you never lose momen-
tum. Those partners should also be checking what is typed for bugs as it goes in,

http://graphics.cs.williams.edu/courses/cs371 7

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

and can use other computers to reference documentation just before it is needed.
It is a good idea to take turns typing, swapping after crossing milestones (e.g.,
whenever you check in to Subversion). I find that it takes more effort to be the
non-typing partner, because more of the thinking onus is on you. You should use
the same practices while debugging.

Working with partners, especially new partners, slows down your programming
rate. That’s because you spend more time thinking and communicating. However,
when you get the workflow under control your net development time should de-
crease. That’s because the extra time invested in programming saves significant
debugging time, since you tend to generate more correct programs. As soon as you
learn your partner assignments, schedule a few pair programming sessions in which
you will plan to complete the lab. I recommend pre-scheduling five hours of time
outside of class. You might not need that much time. But it is easier to cancel a
meeting than it is to schedule one at the last minute.

Now that you’re moving code between projects and between partners, correct
and useful documentation is very important. Remember; you’re not programming
for the computer, and you’re not programming for me–you’re programming for
your future self and partners. They’ll be a lot more critical than I am, although
perhaps not so vocal.

The weakest form of documentation is a comment. Strong interfaces, clear
method names and helper methods, clear variable names, useful auxiliary classes,
and consistent use of design patterns are much better forms of documentation. I
view comments as the thing you add to poorly written code to help understand
it. If the code is good enough, then it doesn’t need comments because it is obvious
what the interfaces are and how the implementations work.

Coding conventions become important when bringing together code from many
sources. These conventions include the use of capitalization and whitespace. It
doesn’t matter what conventions you use so long as they are consistent across the
codebase. Since we’ll be switching partners frequently, it helps if everyone follows
the same coding conventions. So I recommend that you follow the G3D coding
conventions, which are largely the official Java conventions adapted to C++ syntax.
You have the G3D source code available to you, which abundantly demonstrates the
coding conventions. If your code is self-inconsistent, you will lose clarity points on
the evaluation. If it is consistent but different from the G3D conventions then you
will not lose points.

5.2 Getting Started
Start by exporting the previous week’s code to new Subversion project. See the
Tools handout from last week or refer to the Subversion manual [Collins-Sussman
et al. 2008] for information about how to do this. Remember that you can use
anybody’s code from the previous week with their permission, so if you aren’t
happy with your own project as a starting point, just ask around.

The Subversion command to check out your project this week is:

svn co svn://graphics-svn.cs.williams.edu/371/1-Meshes/meshes-<group>

Where you should replace <group> with the name of your group, which is at the

http://graphics.cs.williams.edu/courses/cs371 8

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

end of this handout. Note that you will use your own username and password with
Subversion, but this week that username does not appear in the project name.

Most of G3D’s GUI routines have you pass a raw pointer (yes, the dangerous
thing I told you to be careful with last week!) to the GUI control so that it can
synchronize with a value in your program. For a checkbox, you naturally want a
pointer to a bool variable. G3D::GApp automatically creates a GUI window called
debugWindow for you, and a pointer to a G3D::GuiPane called debugPane as
another G3D::GApp member variable. Look at the methods on G3D::GuiPane in
the documentation to see how to create a checkbox.

5.3 Writing Files

There are many ways of writing text files in C++ using G3D. These include the <<
operator, G3D::Any::saveG3D::Any, G3D::TextOutput, and fprintf. In
general, fprintf is the worst way of doing this because it provides few features
and is easy to make mistakes with. However, you’re writing really simple files this
week and you already know how its cousin, printf, works, so there are certain
advantages to fprintf right now. Here’s an example of writing to a file:

// "wt" means "write text"
// fopen is a C function, so you have to pass C-strings to it
FILE* f = fopen("myfile.txt", "wt");

// if f is NULL, we don’t have permission to open
// the file or the path is bad
debugAssert(f != NULL);

std::string s = "Hi there!";

fprintf(f, "A constant string\n");
fprintf(f, "Some numbers: %d %d\n", 1, 2);
fprintf(f, "A variable string: %s\n\n", s.c_str());

// Close the file
fclose(f);
f = NULL;

I prefer to use the G3D::TextOutput class because it provides more sophisti-
cated format control later in the course.

5.4 File Formats

The Geomview OFF file format is documented in the Geomview Manual [Geom-
etry Techonologies 2010] under “input formats”. The file format specification is
ambiguous and a little bit confusing. That’s typical–learning to work with such
specifications is part of the point of this project. Your cube and cylinder files do
not need texture coordinates, normals, or homogenous vertices. None of your files
need vertex colors or face colors.

http://graphics.cs.williams.edu/courses/cs371 9

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

5.5 Printing std::string

It is handy to use printf and G3D::debugPrintf for debugging. Unfortu-
nately, G3D::debugPrintf is a C function, and std::string is a C++ class,
so they aren’t directly compatible. To convert a std::string to a C string, use
std::string::c_str(), e.g.,

std::string h = "Hello";
debugPrintf("%s\n", h.c_str());

5.6 Making 3D Models
Use large comments with “ASCII art” diagrams to help explain your indexing
schemes in source code and in manually-created data files. Remember that you
can also embed images in the generated documentation and report.

Program in small, modular pieces. That leads to reuseable code that is easier
to debug and maintain. When generating a data file, I find that this advice is best
applied by separating the process of generating the data structure in memory from
the process of serializing that data structure to disk. Although this week’s data
structure and file format are similar, this approach is especially helpful when the
data structure that you need to build the model is different from the one that you
use to encode the completed model.

5.6.1 Cube

When working on the cube, add one face at a time to simplify debugging. Make
lots of diagrams in the data file and in your notebook (or draw on your cube)–this
stuff is hard to visualize entirely in your head.

5.6.2 Cylinder

When working on the cylinder, generate the top disk first and debug that procedure.
Then generate the bottom disk. Finally, fill in the sides. Note that a cylinder with
four slices is a cube, so the process of writing this procedure is one of generalizing
from data you encoded by hand. There are several ways to tessellate a cylinder, so
yours might not look exactly like the one shown in Figure 7.

5.6.3 Heightfield
Tip: Things get really

confusing in the two for

loops if you name your

Image variable “height.”

Consider “elevation.”

Photoshop’s Render Clouds and Difference Clouds filters generate terrain-like height-
fields. You can also find heightfields online. You don’t have to make a terrain–
heightfields can represent car bodies, buildings, a person sleeping under a sheet,
and lots of other shapes with some creativity. Remember that in your scene you
can rotate the heightfield, so the “up” direction can change.

When writing your heightfield, watch out for integer division:

int a = 10;
int b = 7;
float c = a / b; // c == 0.0f
float d = float(a) / b; // d == 0.7f

You’re going to face a number of places where you need to decide between us-
ing width and (width - 1) because a grid has one fewer cell than line in each

http://graphics.cs.williams.edu/courses/cs371 10

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

dimension. Try drawing out a 2 × 2 heightfield grid and working out the indexing
and texture coordinates by hand on that to get these right.

5.7 Disabling Code
There are three ways of disabling debugging code in your program: block com-
ments, run-time branches, and compile-time branches. Block comments are conve-
nient for quickly disabling code, e.g.,

/*
debugPrintf("%d %d %d\n", v.x, v.y, v.z);

*/

There’s no way of easily enabling the code in block comments distributed through-
out a program and they don’t nest properly, so they are inferior to other methods
and your final submission should not include them.

Run-time branches allow you to toggle debugging code at run time, e.g.,

if (m_debugVertexPositions) {
debugPrintf("%d %d %d\n", v.x, v.y, v.z);

}

You can easily map the conditionals of run-time branches to GUI controls. Run-
time branches ensure that the code is compiled, even if it is not ever run. That means
that the disabled code is less likely to become out of date over time. They do incur a
small overhead, so sometimes they are not appropriate for an inner loop. However,
since our goal is not a shipping product but a reliable code base for experiments,
performance considerations should be secondary to program maintenance and ease
of use at this point.

Preprocessor commands for compile-time branches look like this:

#if DEBUG_VERTEX_POSITIONS
debugPrintf("%d %d %d\n", v.x, v.y, v.z);

#endif

They require recompilation of your program to toggle, however they ensure that
there is no run-time cost for disabled debugging code. They also allow you to
disable code in syntactically incomplete ways, which is occasionally very useful, if
confusing.

5.8 Texture Mapping
Instead of assigning a single “color” to a surface, we can model color variations
by stretching an image across a surface. This process is called texture mapping
and in this context the image is a texture. In English, “texture” usually means the
feel and bumpiness of a surface, which is called a “normal map” or “bump map” in
computer graphics.

We need some way of specifying the mapping between points in the image and
locations on the surface of the object. A common way to do this is to tie specific
locations in the image to vertices. The in-between areas of surface are then filled
by linearly stretching the in-between areas of texture across them. A texture coor-
dinate is a 2D point, typically with each element on [0, 1], that specifies a location

http://graphics.cs.williams.edu/courses/cs371 11

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

Figure 4: Heightfield at sunset. You can simulate the atmospheric perspective by
painting a gradient across the heightfield’s texture map in Photoshop.

in the image. By assigning a texture coordinate to each vertex we establish the
mapping. By convention, texture coordinates are often referred to by the variables
(u, v) to distinguish them from points in screen space.

If you have a really big area to cover (like an island...) and a fairly unstructured
texture map (like grass or sand), it is more efficient to tile the texture over the
area than it is to make unique grass for every bit of the island. To do this, simply
assign texture coordinates that are larger than 1. By convention, this means “tile the
texture”. If your texture coordinates range from (0,0) to (100,100), then the texture
will tile in a 100×100 grid.

Sometimes we need two texture coordinates at the same location on the surface.
For example, we might want to texture map a cube so that the left edge of one side
aligns with the right edge of its neighbor for a tiling texture. To do this, one creates
two vertices with the same (x, y, z) but different (u, v). Fortunately, you don’t have
to do that for the heightfield in this project and you don’t need texture coordinates
for your other models.

5.9 Texturing

If you’re inspired by the artistic side of this project, here are some tricks for making
terrain. This is for your information only–you won’t receive extra points if you go
to this length on the heightfield part of the project, and it certainly isn’t required.

Knowing how to use Photoshop is a useful skill as a programmer even if you
aren’t making pictures. The filters and commands are handy for adjusting large
amounts of data that happens to be encoded in an image format...like our height-
field. I now describe two ways that you might approach this project.

http://graphics.cs.williams.edu/courses/cs371 12

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

Figure 5: It takes about an hour of texturing work in Photoshop to paint a terrain
like this.

5.9.1 The Multiple Heightfield Method

This method is well-suited to collaboration but can be tricky to get individual fea-
tures in the terrain to line up well with one another. It also doesn’t handle transitions
between land types particularly well.

The basic idea is to create a different height field for each type of terrain and then
let them stick through each other to reveal the appropriate one at the appropriate
location. This allows you to create several height fields independently and texture
them with small, repeating tiles. It also lets you create truly transmissive water by
setting the transmissionmember of the UniversalMaterial::Specification
in your scene file.

The follow section describes in more detail how to create a height image. You
can follow those instructions and then adjust the result to yield a series of height
fields that you then texture appropriately.

5.9.2 The Megatexture Method

This method gives you easy control over the interaction between different terrain
types, but requires making some huge data files and is hard for multiple people to
collaborate on.

Figure 6: 2D terrain
texture map in progress
in Photoshop.

Figure 7: In-progress
texture map viewed in
3D.

It took me about an hour to create the terrain in Figure 5. I first generated a
128 × 128 grayscale noise field with a Photoshop filter called “Render Clouds”. I
ran the filter a few times until I liked the pattern it made. I then used the Levels
command to stretch the histogram to fill the entire value range.

I used the Curves command to draw a profile of the terrain. I flattened the first
10% of the value range to create the large “water” regions, made the next 50% of
the value range slope up linearly, and then steeply curved the mountainous areas
and rounded their top.

I saved the grayscale to produce the heightfield and then resized it to 8192×8192
to make the color texture. Using a single texture for the entire world is the basic
idea behind John Carmack’s megatexture [Dornan 2006], which you might have
heard about in the popular gaming press. It is easy to do this for a heightfield that

http://graphics.cs.williams.edu/courses/cs371 13

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

Figure 8: Gallery from 2010

Figure 9: Other motivating height field renderings

fits entirely in memory. If the heightfield were bigger we’d need some kind of page
table to manage multiple textures, and if we were working with an arbitrary mesh
we’d need a more sophisticated texture parameterization.

I used the magic wand tool to select all of the water. I used the clone tool to paint
a tiny swatch of water texture I found on Google Images as a semi-unique texture
over all water areas. I then repeated this for other elevations with different textures,
periodically checking how it looked in 3D.

Finally, I gamma adjusted the entire texture so that it appeared darker in Photo-
shop. I could have instead altered the Material::Specification in the corre-
sponding Scene file to use a gamma factor on load.

From the G3D data documentation I selected a natural sky image for use as the
skybox, and placed an appropriate light source to act as the sun. The result is clearly
“programmer art”–it is ugly and amateur compared to a professional artist’s work,
but it is pretty enough that we can tell this technique would yield reasonable terrain
in the hands of a talented texture artist and given enough time you could imagine
refining it for a later project.

One of the problems with my terrain texture is that it only varies based on eleva-
tion. If you look at real terrain, you’ll notice that vegetation and rockiness strongly
correlate with slope, not just elevation. Making flatter parts have more vegetation
and steeper parts more rocky would improve the overall appearance. You can prob-
ably imagine use tricks in Photoshop to obtain the derivative of the heightfield, or
even writing a program to automatically texture a terrain. The latter would make a
nice midterm project!

http://graphics.cs.williams.edu/courses/cs371 14

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

References
COLLINS-SUSSMAN, B., FITZPATRICK, B. W., AND PILATO, C. M. 2008. Subversion complete reference. In

Version Control with Subversion. O’Reilly, ch. 9. http://svnbook.red-bean.com/en/1.5/svn.
ref.html. 8

DORNAN, C. 2006. Q&A with John Carmack. Gamer Within (May). http://www.team5150.com/

˜andrew/carmack/johnc_interview_2006_MegaTexture_QandA.html. 13

GEOMETRY TECHONOLOGIES, 2010. Geomview manual. http://www.geomview.org/docs/html/
index.html. 2, 9

http://graphics.cs.williams.edu/courses/cs371 15

http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://www.team5150.com/~andrew/carmack/johnc_interview_2006_MegaTexture_QandA.html
http://www.team5150.com/~andrew/carmack/johnc_interview_2006_MegaTexture_QandA.html
http://www.geomview.org/docs/html/index.html
http://www.geomview.org/docs/html/index.html
http://graphics.cs.williams.edu/courses/cs371

	Introduction
	Overview
	Schedule

	Rules/Honor Code
	Individual Checkpoint
	Team Specification
	Report

	Implementation Advice
	Teamwork
	Getting Started
	Writing Files
	File Formats
	Printing std::string
	Making 3D Models
	Cube
	Cylinder
	Heightfield

	Disabling Code
	Texture Mapping
	Texturing
	The Multiple Heightfield Method
	The Megatexture Method



