
CS371 Tools Overview

Updated September 3, 2010

In CS371 you’ll use a development environment similar to what you would encounter in profes-
sional development. It comprises a C++ build system, revision control, a debugger, documentation
tools, profiling tools, and many software libraries. Most industry developers use commercial, visual
integrated development environments (IDEs) like Visual Studio. In class we favor command-line
open source tools . Learning these tools may help you understand the fundamentals better than the
visual environments. What you learn with these tools is directly applicable to the visual environ-
ments, and they are always available to you for future courses and work environments because they
are that are cross-platform and freely available.

This document briefly introduces the software development environment for CS371. It is intended
as an introduction and quick reference guide. Refer to the online manuals and guides [van Heesch
2010; Roberts 2009; Collins-Sussman et al. 2008; McGuire 2010], OS X man pages, and built-
in help commands for more detailed information. I’m intentionally telling how to find information
rather than giving you the information directly so that you will learn to work with reference materials
and external resources.

Contents

1 Subversion 2
1.1 Revision Control . 2
1.2 Commands . 3
1.3 Starting Each Week . 4

2 iCompile 5
2.1 Directory Organization . 5

3 Coordinate System 6
3.1 3D . 6
3.2 World and Object Space . 6
3.3 Rotations . 6
3.4 2D . 6
3.5 Units . 6

4 The C++ Memory Model 7
4.1 Types . 7
4.2 Pointer Types . 7
4.3 Stack and Heap Allocation . 9
4.4 References . 9
4.5 Reference Counted Pointers . 10
4.6 Copying and Assignment . 11
4.7 Pre- and Post-Increment . 12

CS371 2010 | TOOLS OVERVIEW

5 Doxygen 13
5.1 Markup . 13
5.2 Style . 14
5.3 Links . 14
5.4 Equations . 14

6 G3D 15

7 Working from Home 16

1 Subversion

1.1 Revision Control
Subversion is a revision control system. Revision control maintains a server-side repository (i.e.
database) of the files in your project. You can check out (i.e., download) a copy of these files to
your local machine, into what is often called a workspace. You then develop with the local copy
and commit your changes back to the server, which merges your changes into the files already
there. Commits usually occur at the end of your programming session or after completing some
milestone. Because commits merge files, you can modify your program on multiple computers and
you individual changes will be integrated at the server. Multiple programmers can also modify files
from the project simultaneously and independently, and then rely on the merge to integrate them.
Once you have a workspace, you can also update it by merging any changes from the server side
made since check out time into your workspace. Most software today, both in research and industry,
is developed using revision control to manage project files. That is because of the many advantages
it offers, including:

1. History–you can jump back to the state your project had at any previous commit point. This
is particularly useful if some new change introduced a bug or accidentally removed a compo-
nent.

2. Asynchronous development–multiple developers can work on the same code base without
tightly coordinating.

3. Multi-computer development–you can use the fast local disk for work and rely on revision
control for moving files between computers, rather than explicit copying which is prone to
error.

Revision control has drawbacks as well. To avoid these, adopt the following practices:

1. Always add new files to the system as soon you create them. Adding does not commit.

2. Always commit before leaving a machine, and then update to see if you forgot to add new
files.

3. Update and build every time you sit down at a computer. This will alert you if the build is
broken before you make new changes.

4. Always run svn status in your project root before you log out to make sure you checked
everything important in.

http://graphics.cs.williams.edu/courses/cs371 2

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

5. Work in small increments, committing frequently.

6. Only commit working builds. Use if (false) or comments to temporarily disable broken
code if you have to end your programming session at a specific time.

7. Avoid editing the same files, and especially the same methods, simultaneously with your
partner. The system cannot merge changes to the same line of code and changes within the
same method are likely to merge but risk incorrect semantics.

8. Never copy or move directories that are under revision control.

9. Never modify the .svn directories.

10. Never add generated files (e.g., executables, generated documentation) to the repository.

11. Avoid adding large binary files (e.g., 20 MB movies, PSD files), and especially avoid chang-
ing such large binary files because Subversion cannot merge these, so they consume tremen-
dous server space and slow down the system.

1.2 Commands
You will access Subversion through the svn command-line program. Issue subversion commands
by running svn with arguments specifying the operation you would like to perform and any options
that command requires. The major commands that you will use are:

svn co source-URL

svn update

svn add filename

svn commit -m " log message "

svn export [--force] source-URL dest-dir

svn status

To tell Subversion to ignore a file, use:

svn propset svn:ignore file-pattern containing-dir

For, example,

svn propset svn:ignore log.txt data-files

Refer to the Subversion manual [Collins-Sussman et al. 2008] or use the svn help command
for other useful commands and for the details of these.

When you commit you must specify a log message. Make this a one sentence description of your
changes. These will help you if you need to revert a change and will help your partner (in future
projects) to understand what new code has come in with an update.

http://graphics.cs.williams.edu/courses/cs371 3

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

1.3 Starting Each Week
For each project I will create a Subversion module for you. This will either have your username or
an assigned team name in the directory name.

Your workspace will initially be an empty directory. For most projects, you’ll quickly fill this by
copying your solution (or another student’s) from the previous week. You can’t just copy the di-
rectory structure of another project directly because Subversion maintains its state in subdirectories
named .svn. If you copy a .svn subdirectory, you will corrupt the state of your working copy.
Copying would also bring along generated files like executables that you don’t want.

Use the Subversion export operation to export a previous solution from the server and strip its
revision control data. You can then check this back in as a different project. If your username was
ewilliams and you were working on Project 1, the commands for this process would be:

cd /local-scratch
svn co svn://graphics-svn.cs.williams.edu/371/1-Meshes/ewilliams-meshes ewilliams-meshes
svn export --force svn://graphics-svn.cs.williams.edu/371/0-Cubes/ewilliams-cubes ewilliams-meshes
cd ewilliams-meshes
svn add *
svn commit -m "Exported from previous week"

http://graphics.cs.williams.edu/courses/cs371 4

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

2 iCompile

iCompile is an automated build system for C++ on Linux and OS X. It provides similar functionality
to tools like Make, MSBuild, and Ant. What makes iCompile unique is that it generally requires
no configuration. You just run icompile with no options in the root directory of your project and
it automatically determines dependencies, directories, and compiler and linker options and builds
your program. You can also use it to build documentation, shared and static libraries, and standalone
OS X distributions (.dmg files).

iCompile is implemented as an open source Python script that is installed as part of the G3D
distribution. Run icompile --help to see a full list of options. Some of the most common are:

--run [... args ...] If compilation succeeds, run the program. Arguments can be passed
on after the run flag.

--gdb [... args ...] If compilation succeeds, run the program under a debugger.

--clean Delete all generated files.

--doc Generate documentation from Doxygen markup.

--opt Build an optimized executable.

You can customize iCompile’s behavior by editing ˜/.icompile and the project’s ice.txt
file.

2.1 Directory Organization
iCompile can work with almost any directory structure. However, it treats certain directory names
specially to support common development needs. For CS371, I want you to take advantage of this
by structuring all of your projects with the following subdirectories:

source All of your source code, divided among .h and .cpp files, and the
source for your report and overview documentation in .dox files.

data-files Any runtime data required by your program that is not also in the G3D
data distribution.

doc-files Any data required for your report, such as images and videos. Do not
put the .dox files here.

graveyard Files that you want to keep around for your own reference but do not
want me to evaluate or the build scripts to process.

You must use the exact naming scheme described here, including capitalization, to ensure that the
scripts I use to process the projects work correctly. The naming scheme is part of the specification
for each project and you will lose points for varying from it!

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

3 Coordinate System

Every 3D system imposes its own coordinate system conventions. These are arbitrary–everything
that you’ll learn in this course works equally well in any coordinate system, and it is straightforward
to convert between them.

3.1 3D
In the 3D coordinate system used in this course, the x-axis increases to the East, the y-axis increases
vertically upwards, and the z-axis increases to the South.

This is a right handed coordinate system. If you point your right hand in the direction of the
x-axis and curl your fingers towards the y-axis (which necessitates having your palm upwards), then
your thumb will be pointing along the z-axis. This works for any cyclic rotation of the order of axes,
e.g., x-y-z has the same relationship as y-z-x.

3.2 World and Object Space
We distinguish between the absolute world-space (a.k.a. global) coordinates in which we will
define the entire world (a.k.a. scene) and the relative object-space (a.k.a. body-space, local) coor-
dinates used to define parts of an object relative to the reference frame of that object. For example,
I might position a chessboard relative to the center of the scene, but the pieces on the board relative
to the board itself.

By convention we will generally define object space coordinate systems in a common way. For
objects that have a clear “top,” we will make their object space y-axis point upward. For objects that
have a natural “facing” direction, such as cars and people, we will define their object space z-axis
to point out their back and the x-axis to point to their right. Thus objects look along their negative
z-axis.

3.3 Rotations
The canonical rotations about the x-, y- and z-axes are called pitch, yaw, and roll. These also
follow a right hand rule: if you point your thumb in the direction of the axis of rotation, your fingers
curl in the direction of increasing angular measure.

3.4 2D
In the 2D coordinate system used in this course for images and the screen, the origin is at the
upper-left corner. The x-axis increases to the right and the y-axis increases downward. The reading
discusses the historical origin if this coordinate system.

Image space coordinates are sometimes expressed in pixel side-lengths, e.g., position (100, 120)
on a 1920×1080 image. At other times they are in normalized so-called texture coordinates, in
which (1, 1) is the lower-right corner of the image regardless of its resolution or aspect ratio. Texture
coordinates are often expressed using the variables (u, v) or (s, t) to distinguish them.

3.5 Units
We use SI units (e.g., meters, seconds, Joules, Watts), which include radians as the unit of planar
angle measure.

http://graphics.cs.williams.edu/courses/cs371 6

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

4 The C++ Memory Model

This section briefly overviews a subset of the ways of working with memory and types in C++.
You need to know about these features, especially pointers, because you will interact with APIs that
require you to use them and you will design your own data structures that require them. Beware that
pointers in C++ are a very dangerous feature that are responsible for many of the crashes observed
in commercial software, and that you can almost avoid using them.

If you’re used to programming in Java, you need to get out of the habit of writing new every time
you create a value. You also need to always be conscious of: how large your values are, whether
values are in the stack or the heap, and when you are referring to a pointer to a value vs. a value
itself.

You can avoid most memory management related program errors by following these practices:

• Allocate small objects on the stack whenever possible

• Allocate only one variable per declaration (e.g., int x; int y instead of int x, y)

• Always initialize variables (C++ does not define the value of uninitialized variables!)

• Avoid using explicit pointers–favor references and reference-counted pointers

• Avoid ever using new except in static factory methods of reference-counted objects

• Avoid the address-of operator and pointer arithmetic

• Use C++ strings (std::string s) instead of C-strings (char* s)

• Use C++ arrays (G3D::Array<T> a or std::vector<T> a) instead of C-arrays (T
a[])

4.1 Types
A variable is a name in a programming language that refers to a value. That value is stored at some
address in memory. The type of the value specifies the interpretation of the bytes in memory at
the address. C++ is a statically-typed language, meaning that the type of a variable is determined at
compile time and never changes (the type of a value of course never changes in any language).

A variable is declared by the type followed by the name, for example,

int x;
App app;

Some examples of types in C++ are int, std::string, and float. You can create new
types are created using class declarations.

4.2 Pointer Types
Indirection is a useful tool in programming. Sometimes we don’t want to refer directly to a value,
but to the location at which the value is stored. In this case we use a pointer type. In Java, all
variables except those with primitive types are implicitly pointer types. In C++, pointer types are
explicit. A pointer type consists of the type of value that is being pointed at, followed by an asterisk.
For example, int* is the type of a pointer to an int. You can make a pointer to any value. You can
also make pointers to pointers. The following are all legal declarations of pointer variables:

http://graphics.cs.williams.edu/courses/cs371 7

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

int* x;
float** y;

class Foo {
int z;

};

Foo* f;

Pointers are only useful when they point at something. The value of a pointer is an address. There
are three common ways of obtaining an address: calling a function that returns a pointer, allocat-
ing memory, and using the address-of operator. The new operator is the safest way of allocating
memory. It allocates a block of memory on the heap, invokes the constructor of the specified type,
and then returns a pointer to that new object. Memory allocated by new can later be deallocated by
delete, which invokes the destructor on the object and frees the memory. It is a good idea to set
the pointer variable to the NULL address afterward to avoid accidentally referring to the deallocated
memory block. For example,

int* x = new int();
...
delete x;
x = NULL;

The address-of operator returns the address at which a value is stored, for example:

int y = 3;
int* x = &y;

It is somewhat dangerous to use the address-of operator because one must be careful to ensure
that the pointer is only used when the referenced memory is still allocated.

A pointer value cannot be used directly. Instead, one must dereference the pointer using the
dereference operator to obtain the value that was pointed at. The dereference operator is an asterisk
that is placed before the pointer value. For example:

float* q = new float(3.14f);

// Operate on the value pointed at by q

*q = *q * 2.7f;

delete q;
q = NULL;

When the value pointed at has member variables or methods, these can be accessed more con-
cisely with the arrow operator.

std::string* s = new std::string("hello");

// This is the same as: (*s).substr(3);
s->substr(3);

delete s;
s = NULL

http://graphics.cs.williams.edu/courses/cs371 8

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

4.3 Stack and Heap Allocation
All variables declared within a function or method refer to memory on the stack. Member variables
of classes refer to memory in the same location as the class instance.

Variables are declared within scope lines demarcated by curly braces. This means that the mem-
ory associated with a variable is no longer assigned to that variable when the program exits the
scope line. Variables on the stack do not have to be explicitly allocated–the declaration implies the
allocation. They also do not have to be explicitly deallocated.

The address-of operator allows you to obtain a pointer to memory on the stack. Nothing prevents
you from retaining that pointer after the program exits the scope line. Pointers to values from
variables that are no longer in scope are called dangling pointers, meaning that they reference
memory that is no longer allocated for its original purpose. Dereferencing a dangling pointer will
read or write an untended value, which will corrupt memory and possibly crash your program. This
is one reason that the the address-of operator is so dangerous: it can be used to obtain the address
of a value on the stack that may then go out of scope.

To create a value that persists beyond a scope line, allocated typed, constructed memory in the
heap with new or untyped, uninitalized memory in the heap with malloc. G3D also provides
some optimized variations on malloc– see G3D::MemoryManager and its subclasses.

A memory leak occurs if you forget to later free the memory that was allocated on the heap.
Leaks do not corrupt memory, although you could run out of memory at some point. Nothing
prevents you from retaining a pointer to memory that you have explicitly freed, so you can create
dangling pointers by freeing memory and then using pointers to it anyway. Nothing prevents you
from freeing the same memory twice, which will throw an exception, crash your program, or corrupt
memory. Since you may have more than one pointer to the same block of memory, it can become
tricky to know when it is safe to free.

Hopefully all of these potential errors are convincing you that manual heap memory management
is hard and dangerous, and that you should stack allocate almost everything and rely on well-tested
data structures (like G3D::Array) to manage the heap for you.

Note that an object that references a large amount of data may itself consume a small space on
the stack. For example, a G3D::Array containing one million 32-bit integers takes about 8 bytes
of stack space–it only stores the length of the array and a pointer to some memory in the heap. Thus
allocating the array object on the stack is very reasonable...but beware that assigning one array to
another will trigger a giant copy.

4.4 References
A C++ reference type has the syntax of a value and the semantics of a pointer. It allows you to
create a new name for a value that is already in memory in a relatively safe way. A reference type
has an ampersand after the type of the referenced value. References must be initialized at creation,
which means that they are never NULL.

For example,

// A value on the stack
int x = 7;

// A reference to the same value as x
int& y = x;

y = 3;

http://graphics.cs.williams.edu/courses/cs371 9

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

// Both x and y are now 3!

Since assignment overwrites a value with a new value, it can copy significant amounts of mem-
ory. Copying is slow, and often not the semantics we want anyway. Therefore references and
const (immutable) references are frequently used for passing parameters to functions and meth-
ods. References are rarely used as return values because the return value of a function is frequently
an intermediate value or a local variable–both of which are on the stack and will be undefined when
the function returns.

4.5 Reference Counted Pointers
A reference counted pointer has syntax and semantics like that of a pointer, except that it manages
the referenced memory automatically. Each reference counted object has an internal count of the
number of pointers that reference it. When that count reaches zero, there is no way of referring to
the object, so the object knows that it can safely delete itself. This avoids dangling pointers and
provides the garbage collection semantics of languages like Java and Python. This does not prevent
memory leaks because a cycle of pointers (e.g., an object with a reference counted pointer to itself)
will keep all of the counts along the cycle above zero even though there are no external pointers into
that cycle.

C++ has no built-in reference counted pointer type, but the language is rich enough that li-
braries can provide them. The standard library defines auto ptr and shared ptr, which have
reference-counting-like semantics. These don’t do exactly what you would expect, however, so you
should use G3D’s G3D::ReferenceCountedPointer.

To use an existing reference-counted type you write code like:

// Acts like Image*, but you don’t have to free the
// memory yourself
Image3::Ref image;

// All reference-counted objects provide a static factory
// method; don’t use new
image = Image3::createEmpty(128, 32);

// Invoke methods just as if with a raw C pointer
image->set(10, 10, Color3::blue());

// Create aliased pointers
Image3::Ref b = image;

// Whenever the last pointer to this object is set to NULL
// (or the pointer variable goes out of scope)
// the image will be destroyed and the memory reclaimed.
b = NULL;
image = NULL;

To create your own reference-counted class, use the following pattern:

// header:
class Foo : public ReferenceCountedObject {
public:

// Makes a shorthand Foo::Ref instead of forcing the programmer

http://graphics.cs.williams.edu/courses/cs371 10

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

// to write out ReferenceCountedPointer<Foo>
typedef ReferenceCountedPointer<Foo> Ref;

private:
...

// Make your constructors private to prevent programmers
// from invoking "new Foo()" anywhere.
Foo();
...

public:

// Define a factory method
static Ref create();
...

};

//
// source file:
Foo::Ref Foo::create() {

return new Foo();
}

4.6 Copying and Assignment
C++ provides many ways of copying and initializing variables. This is a weakness of the language
and you should use a few idiomatic forms to avoid confusion. Always initialize variables in their
declarations using parentheses (think of this as invoking the constructor) instead of using the as-
signment operator:

// Good: Create y on the stack with an initial value of 3.
int y(3);

// Bad: Create x on the stack uninitialized, create a temporary
// value 3 on the stack, copy 3 to x, and then release the
// temporary value.
int x = 3;

In the case of a single integer, the compiler will actually generate the same code in both cases.
But if you were creating a larger object, the second case would be inefficient. For example:

// Good: creates one empty array
Array<int> y;

// BAD: Creates two empty arrays and copies one over the other
Array<int> y = Array<int>();

// Illegal: assigning a pointer to a non-pointer variable
Array<int> y = new Array<int>();

// Bad: you probably want an array, not a pointer to an array
Array<int>* y = new Array<int>();

http://graphics.cs.williams.edu/courses/cs371 11

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

// Bad and illegal: Now you’re just writing random pieces
// of code and hoping it will work. Come to office hours.
Array<int>::Ref z = new Array<int>::Ref()

4.7 Pre- and Post-Increment
Get in the habit of writing ++i instead of i++. Here’s why.

C++ uses incrementable iterator objects to concisely iterate through the elements of data struc-
tures, e.g.,

Table<std::string, int> table;
...
for (Table<std::string, int> it = table.begin(); it.hasMore(); ++it) {

printf("%s %d\n", it->key.c_str(), it->value);
...

}

By convention, the pre-increment operator in the for-loop means that the iterator object should
move to the next element of the table. That iterator object may have a substantial amount of state
inside it. If we post-increment (it++), the compiler is forced to make a copy of the iterator object to
return as the value of the post-increment operation. That copy could be very expensive. If we pre-
increment (++it), then the compiler need not make a copy. This makes no difference in languages
like C or Java that only support increment on primitive types, but is tremendously important in C++.

http://graphics.cs.williams.edu/courses/cs371 12

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

5 Doxygen

Write entry point (class, method, function, macro, enum, typedef) documentation and final report
as Doxygen comments inside your C++ header (.h) files and standalone .dox files, all stored in
the source directory.

Put images and other files referenced from your documentation in the doc-files subdirectory.
iCompile will copy them when you build documentation.

Like HTML and LATEX, Doxygen is a markup language that you use to edit a document. To
actually view the document, you must compile it. To compile the document, execute the command
doxygen with no arguments in the directory containing a file named Doxyfile. The Doxyfile
that you will use for all projects is provided on the course webpage. You never need to modify it,
although you may if you wish.

The following is a brief overview of some of the features of Doxygen. Read the manual [van
Heesch 2010] for full details. Sharing markup tips and helping classmates with formatting is
one way to earn class participation, so please collaborate on this and let me know at the end
of your report if you gave or received assistance.

5.1 Markup
Doxygen comments begin with /** and end with */. They apply to the entry point immediately
following the comment. Only the markup in your header files and in .dox will affect your generated
documentation.

An example of how to document a class is:

/** Represents a direction and magnitude in 3D. */
class Vector3 {
public:

/** Distance along the x-axis. */
float x;

...

/** Magnitude of the vector. */
float length() const;

};

You may have exactly one \mainpage markup command throughout your program. This de-
clares that the containing comment forms the index.html page that will be your report. Put this
in a .dox file in the source directory, e.g.,

/**
\mainpage

Project 0: Cubes

Ephram Williams

\section outline Code Outline
App::onInit loads the scene...

\htmlonly
<center></center>
\endhtmlonly

http://graphics.cs.williams.edu/courses/cs371 13

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

...

*/

5.2 Style
Doxygen markup commands begin with a backslash. Some useful ones are \sa, \brief, \param,
\author, and \return. Doxygen also allows creation of nested lists using leading dashes and
hash marks, and some HTML commands work as well. You can escape to raw HTML by creating
a \htmlonly...\endhtmlonly block. See the manual for more markup commands.

5.3 Links
Doxygen will automatically hyperlink URLs and the names of entry points (e.g., methods, functions,
classes, and variables) in your project. Make sure to check these links in your report–mispellings
and incorrect capitalization can break them. Compare the G3D header source code and the generated
documentation for a page, and remember that you can mine the G3D source for examples of how to
achieve specific effects.

5.4 Equations
Within Doxygen comments, you can format standalone equations using LaTex markup inside blocks
bracketed by \f[and \f]. For inline equations, use \f$ to both begin and end the block. As an
example, the following Doxygen source:

\f[\int_{0}ˆ{2\pi} \!\! \int_{0}ˆ{\pi/2} \cos \theta ˜ d\theta ˜ d\phi = \pi \f]

Embeds this equation in your document:∫ 2π

0

∫ π/2

0
cos θ dθ dφ = π

I recommend Andrew Roberts’ LaTex math tutorial [Roberts 2009] if you are unfamiliar with
LATEX.

If your LATEX code contains an error, Doxygen may cache the erroneous result, which makes it
hard to debug. When you suspect that this is happening, use icompile --clean to clear the
cache.

http://graphics.cs.williams.edu/courses/cs371 14

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

6 G3D

The G3D Innovation Engine is an open source C++ library for 3D graphics on Windows, Linux,
and OS X. It is used in commercial games, research papers, military simulators, and university
courses. G3D supports hardware accelerated real-time rendering using OpenGL, off-line rendering
like ray tracing, and general purpose computation on GPUs.

No 3D developer programs directly on the C++ standard library and OpenGL or DirectX. They
are at too low of a level and don’t provide necessary facilities such as scene management, image
I/O, GUIs, and platform abstraction. Instead, programmers adopt “engines” packaged as libraries
that provide those features.

G3D is similar to the 3D engines that you would find in a film or game company, but it has
been tailored for research and education. In particular, G3D has a modular design that allows you to
replace components with ones that you built yourself, and because the full source code is available it
provides about 200k lines of sample code (in addition to the samples that are in the documentation).

See the latest version of the G3D manual [McGuire 2010] for detailed information about the
library.

http://graphics.cs.williams.edu/courses/cs371 15

http://graphics.cs.williams.edu/courses/cs371

CS371 2010 | TOOLS OVERVIEW

7 Working from Home

I only support working on the department Mac computers in TCL 126 and the Special Purpose Lab
using Emacs, gdb, and g++/iCompile with G3D and the libraries it includes.

However, you are permitted to use any development tools (such as Xcode), computer (such as
your own laptop), or operating system (such as Windows) in this course. Beware that if you run into
trouble, I’m probably going to tell you to use the CS department computing environment.

G3D 9.00 beta for Windows / Visual Studio 2010 and OS X / gcc is available from the G3D
Subversion server (which is different than the course subversion server). See http://g3d.sf.
net for information. Make sure that you use the 9.00 version from source, not the public release
8.00 binaries. Installation and use instructions are included with the library

The Visual Studio 2010 Express IDE for Windows is a free download from Microsoft. The OS X
developer tools including gcc are a free download from Apple.

The course subversion server is available outside the department and from off campus. Beware
that deadline timestamps are based on the server’s clock, not your client machine’s clock.

G3D Windows and OS X are 100% compatible. For my own research I move the same code
between Windows and OS X on a daily basis. So you should be able to move fluidly between IDEs
and operating systems on the same project.

References

COLLINS-SUSSMAN, B., FITZPATRICK, B. W., AND PILATO, C. M. 2008. Subversion com-
plete reference. In Version Control with Subversion. O’Reilly, ch. 9. http://svnbook.
red-bean.com/en/1.5/svn.ref.html. 1, 3

MCGUIRE, M., Ed. 2010. The G3D 9.00 beta Manual. September. http://graphics.cs.
williams.edu/course/cs371/f10/G3D/manual. 1, 15

ROBERTS, A., 2009. Getting to grips with Latex - Mathematics, December. http:
//www.andy-roberts.net/misc/latex/latextutorial9.html and http://
www.andy-roberts.net/misc/latex/latextutorial10.html. 1, 14

VAN HEESCH, D., 2010. Doxygen 1.7.1 manual. http://www.stack.nl/˜dimitri/
doxygen/manual.html. 1, 13

http://graphics.cs.williams.edu/courses/cs371 16

http://g3d.sf.net
http://g3d.sf.net
http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://graphics.cs.williams.edu/course/cs371/f10/G3D/manual
http://graphics.cs.williams.edu/course/cs371/f10/G3D/manual
http://www.andy-roberts.net/misc/latex/latextutorial9.html
http://www.andy-roberts.net/misc/latex/latextutorial9.html
http://www.andy-roberts.net/misc/latex/latextutorial10.html
http://www.andy-roberts.net/misc/latex/latextutorial10.html
http://www.stack.nl/~dimitri/doxygen/manual.html
http://www.stack.nl/~dimitri/doxygen/manual.html
http://graphics.cs.williams.edu/courses/cs371

Index

.dox file, 13

.svn, 3

address, 7

check out, 2
commit, 2
coordinate system, 6

dangling pointer, 9
dereference, 8
doc-files, 13
Doxyfile, 13
Doxygen, 13

G3D, 15, 16
G3D::Array, 9, 11
G3D::MemoryManager, 9
G3D::ReferenceCountedObject, 10
G3D::ReferenceCountedPointer, 10

header file, 13
heap, 9
HTML, 13

iCompile, 5, 13

LaTeX, 13

malloc, 9
memory leak, 9

new, 9
NULL, 8, 10

object-space, 6

pitch, 6
pointer, 7

reference, 9
reference counted pointer, 10
repository, 2
revision control system, 2
right handed, 6
roll, 6

scene, 6
stack, 9
Subversion, 2

texture coordinates, 6
type, 7

update, 2

value, 7
variable, 7
Visual Studio, 1, 16

Windows, 16
workspace, 2
world-space, 6

Xcode, 16

yaw, 6

	Subversion
	Revision Control
	Commands
	Starting Each Week

	iCompile
	Directory Organization

	Coordinate System
	3D
	World and Object Space
	Rotations
	2D
	Units

	The C++ Memory Model
	Types
	Pointer Types
	Stack and Heap Allocation
	References
	Reference Counted Pointers
	Copying and Assignment
	Pre- and Post-Increment

	Doxygen
	Markup
	Style
	Links
	Equations

	G3D
	Working from Home

