
CS 371 Project 1:

Meshes

Figure 1: An island from the in-development game The Witness (http://
the-witness.net/news/?p=459) implemented as a heightfield. The Wit-
ness is by Jon Blow, author of the award-winning indie title Braid. In this project
you’ll learn how to work with 3D data files and the indexed triangle mesh structure.
By the end you’ll be able to model a scene like this.

1 Introduction

1.1 Overview Tip: Read the report

question about irregular

heightfields in Section 3.2

before you start program-

ming. It requires some

thought and shouldn’t be

left until just before the

deadline.

The interior of an opaque object is never visible. Therefore we only need to model
the surface in order to render it. The indexed triangle mesh is one of the most
popular data structures for modeling 3D surfaces.

A 3D heightfield1 is a mathematical function from R2 to R. In other words, one
dimension is a function of the others. Heightfields frequently employed in graphics
as models of terrain, non-breaking waves, and small bumps on surfaces. They can’t
model features like bridges or tunnels in terrain, however one can augment a height-
field with additional models in the context of a scene to represent those features.
That is how most video games model their outdoor settings, as seen for example
in the development screenshot of The Witness in Figure 1. A heightfield can be
represented as an indexed triangle mesh by displacing the vertices of a regular grid
in a single dimension.

Data-driven programming is a technique for pushing constants out of source

1A bit confusingly, this is quite reasonably called a 2D heightfield as well; and it is also occasion-
ally referred to as a 2.5D model!

http://the-witness.net/news/?p=459
http://the-witness.net/news/?p=459


CS371 2010 | PROJECT 1: MESHES

code and into data files that are read at runtime. It has several advantages over so-
called hard-coded constants that are embedded in code. Data files are interchange
formats that allow the use of different tools for creating and processing data. They
allow the same input to be used with many programs, and are a way of connecting
programs to each other. By working with standard data file formats, we can increase
the number of programs that our own can interact with and gain access to large
repositories of information.

Data files also enable people with different skill sets to work on scenes inde-
pendently. In computer graphics, data files are often created by artists using 3D
modeling, animation, and texturing tools, while the source code is written by pro-
grammers. When data is outside the program, you can modify and reload it while
the program is running. This eliminates the time to compile and run your program
from the debugging cycle, which is important for streamlining your workflow. Last
week you modeled a scene very slowly by editing source code. Hopefully that
experience convinced you that hard-coding scenes is an inefficient way to work!
From now on, you’ll create data files for constants like scene information and re-
load them at runtime when adjusting your program.

For this project you will convert your Cubes code to be data-driven, and then
incorporate indexed triangle meshes into it. We’ll use the G3D .scn.any file
format for our scenes and the Geomview OFF file format [Geometry Techonologies
2010] for meshes. Both of these are relatively obscure. I chose them because
they are similar to more widely used formats but are easier to create and debug,
especially since they are in plain ASCII text. In later projects you will work with
some mainstream extensible binary formats that follow the same principles. As
for most projects, you will use your solution code as the starting point for the next
project, so take care to structure the program in a flexible manner and be sure to
document your source clearly.

1.2 Educational Goals
On this project you’ll learn about:

1. Principles

(a) Indexed triangle meshes

(b) Heightfields

(c) Texture mapping

2. Practice

(a) Exporting from Subversion

(b) Pair programming

(c) Typesetting equations in LATEX

(d) Data-driven programming

(e) Working with file-format specifications

http://graphics.cs.williams.edu/courses/cs371 2

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

1.3 Schedule Tip: Project specifica-

tions are available on

Tuesday mornings–if you

read them before class on

Wednesday, then you can

ask questions in lecture.

Out: Tuesday, September 14
Checkpoint: Thursday, September 16, 1:00 pm

Due: Monday, September 20, 10:00 pm

This is a moderately challenging, pair-programming project. You will work with
an assigned partner and submit a single solution. Note the that the checkpoint
deadline is at the beginning of the scheduled lab period–you need to start this
project on your own before that lab period.

Remember to track how much time you spend on this project outside class.
You’re required to include this in your final report.

As a reference, my solution required 230 statements and 300 comment lines
including the reports (as reported by iCompile), plus several data files. If your
codebase looks like it is going to be more than 1.5× larger or smaller, come talk to
me because you may be on a bad path.

2 Rules/Honor Code

You are encouraged to talk to other students and share strategies and programming
techniques. You should not look at any other group’s code for this project. You may
look at and even use anyone’s code from last week’s project, with their permission.

This is the first pair-programming project of the semester. You and your partner
share a single Subversion repository. You should work together on the major pieces
of the project. For example, do not have one person implement the cylinder while
the partner implements the heightfield. I designed the tasks so that doing them in
order guides you to the right solutions. You may divide the work of writing helper
procedures, debugging, or modeling different parts of the final scene. It is up to
you to ensure that each of you has an approximately equal workload and gains
experience at equivalent tasks.

Part of this week’s project requires reverse engineering two file formats from
sample files and source code. I encourage everyone to pool their efforts towards
this and share what you learn on the mailing list. You can share any information
related to this except for the specific data files and code that you are required to
write. For example, you may share a sample OFF file for a pentagon, but not for a
cube.

During this project, you are not permitted to directly invoke the following classes
and methods or look at their source code: G3D::Welder, G3D::MeshBuilder,
G3D::MeshAlg, and ArticulatedModel::createHeightField.

3 Specification
Tip: G3D is installed at

/usr/mac-cs-

local/share/cs371/G3D/

and is also available at

http://g3d.sf.net

Implement the following by extending the Cubes project from last week:

1. Add a checkbox to the GUI for toggling display of the wireframe.

2. Copy and integrate the Scene class and associated GUI from the G3D starter

http://graphics.cs.williams.edu/courses/cs371 3

http://g3d.sf.net
http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

code sample. The GUI includes the “reload” button and scene-select drop-
down list.

3. Create a data-files/cornell-box.scn.any scene that re-creates your
hard-coded Cornell Box scene from Project 0 using only data.

4. Manually create a data file data-files/cube.off that contains a 1 m3

cube centered at the origin. Use only a triangle mesh and no quadrilateral
polygons. You’ll need to create a corresponding scene to test it.

5. Write a procedure that generates a polygonal approximation of a cylinder
using only triangles and saves it to an OFF file. Parameterize the cylinder by
the height, radius, and number of slices. Do not check generated the file into
Subversion.

6. Write a procedure to generate a regular heightfield from a grayscale image
and saves it to an OFF file.

(a) Treat white as high and black as low in the input image.

(b) Parameterize the procedure on the input image filename, the vertical
axis scale, and the horizontal axes scales.

(c) Put the vertex corresponding to the (0,0) pixel at (0,0,0) in world space.

(d) Have the image x-axis increase along the world-space x-axis and the
image y-axis increase along the world space z-axis.

(e) Assign texture coordinates to the vertices. Make (0,0) correspond to the Tip: To debug height-

field texture mapping, cre-

ate a scene that assigns

the original height image

as the material “color.”

upper-left of the original image and (1,1) the lower-right of the original
image.

7. Create a visually compelling scene containing a texture-mapped heightfield
and any other elements that you would like. Commit the scene file and any-
thing not in cs-local that it needs to run to the data-files directory. Com-
mit the source heightfield image that you used as well.

8. Create the documentation reports specified in Sections 3.1 and 3.2.

As always, you should remove unused code from your program. This includes
last week’s hard-coded Cornell Box scene (although you should do so by porting
it into a data file). An exception is debugging and unit testing code that you may
need again in the future, which is acceptable to retain.

3.1 Checkpoint (Thursday 1:00 pm)
Most projects, like this one, have checkpoint reports. This is something that must
be on your mainpage before that week’s scheduled lab. Checkpoints motivate you
to get to the hard part before lab, so that we’re together when you hit the crux of
the lab. They also give me a chance to verify that you’re on the right track and offer
suggestions if not.

Checkpoints are largely pass/fail. Your work should demonstrate a good faith
effort but need not be perfect to receive full credit at this stage.

http://graphics.cs.williams.edu/courses/cs371 4

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

For this checkpoint:

1. Typeset the following equation into your documentation using LATEX embed-
ded in Doxygen:

df(x)

dx
= lim

h→0

[
f(x+ h)− f(x− h)

2h

]
2. Commit the files for the Scene class and connect up the GUI for it.

3. Commit a (mostly) correct data-files/cornell-box.scn.any data file
to Subversion.

3.2 Report
1. Show pictures of:

(a) Your data-driven Cornell Box scene

(b) Your manually created cube

(c) Your generated cylinder

(d) A top-view of a flat heightfield, showing the tessellation

(e) A visually interesting scene using your heightfield, cylinder, cube, and
any other objects of your choice. You may turn off the wireframe out-
lines for this shot to improve the appearance.

Figure 2: A “hand
crafted” cube.

Figure 3: A tessellated
cylinder.

2. Questions.

(a) How can you simulate a planar reflection, such as the island’s reflection
in the ocean from Figure 1, using only non-reflective models?

(b) Why are triangle meshes a popular modeling primitive?

(c) The regular tessellation we used for heightfields is inefficient. It will
allocate the same number of triangles for flat portions of the heightfield
that need few triangles as for very hilly ones that need many to accu-
rately represent the shape. Briefly propose an algorithm for computing
a more efficient tessellation for a heightfield. Do not actually imple-
ment your algorithm. You may invent one on your own or use external
resources to discover existing algorithms. If you describe an existing
algorithm you must cite a reliable source2. In either case, explain the
algorithm enough that someone could figure out the details and imple-
ment it from your description.

3. Feedback. Your feedback is important to me for tuning the upcoming projects
and lectures. Please report:

2Textbooks and scientific publications are considered reliable sources for computer science
knowledge. Encyclopedias and blogs are great for discovering ideas...for which you should then
track down a reliable source.

http://graphics.cs.williams.edu/courses/cs371 5

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

(a) How many hours you spent outside of class on this project on required
elements, i.e., the minimum needed to satisfy the specification.

(b) How many additional hours you spent outside of class on this project
on optional elements, such as polishing your custom scene or extreme
formatting of the report.

(c) Rate the difficulty of this project for this point in a 300-level course as:
too easy, easy, moderate, challenging, or too hard. What made it so?

(d) What did you learn on this project (very briefly)? Rate the educational
value relative to the time invested from 1 (low) to 5 (high).

4 Evaluation Metrics

For team projects I almost always assign the same grade to both partners. That
means that you are responsible for the entire project, not just the parts that you did.
You’re also responsible for the correctness and clarity of code that you exported
from Subversion to start the project, even if you were not the original author. So
make sure that you know what code is in your project and that you understand it
all!

To evaluate your project, I will check your project out from Subversion as of
the deadline time. I will then run icompile --doc to generate the final report
and documentation. I will read sections of your source code, the report in the
index.html page generated by Doxygen, and sections of your documentation as
generated by Doxygen. I may run your program, but I will primarily investigate
its functionality by the description that you provide in the report. Note under this
scheme, that the artifacts from your creation of and experimentation with the pro-
gram are more important than the executable program itself. For many projects
you can receive a favorable evaluation even if your program does not compile or
execute.

As described in the Welcome to Computer Graphics document, I will evaluate
your project in several categories:

• Mathematical (algorithm, geometry, physics) correctness

• Adherence to the specification

• Program quality

• Report quality

Some questions I consider when evaluating the source code are: Is it possible for
someone unfamiliar with it to find specific routines quickly? Is the code easy to un-
derstand? Does it make good tradeoffs between efficiency, clarity, and flexibility?
Are data structures used effectively? Are the algorithms correct? Are the geometry
and physics correct?

When evaluating the report, I consider: Do the experiments adequately explore
the correctness, performance, robustness, and parameter space of the algorithm?

http://graphics.cs.williams.edu/courses/cs371 6

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

Are known bugs made clear, along with how you tried to solve them? Are appro-
priate sources cited for algorithms and code? Does the overview documentation
guide a reader to the relevant source code documentation? Is the architecture of the
program clear?

The report and code should both be as concise as possible without compromising
clarity. Use the papers we’ve read as examples of how to describe experiments
compactly.

5 Implementation Advice

5.1 Teamwork
Three ways to work with a partner are:

1. Pure pair programming: one person drives a computer while the other watches
and makes suggestions.

2. Side-by-side programming: each person sits at a separate computer at the
same time. Frequent commits and updates and constantly running communi-
cation allow them to synchronize their efforts.

3. Asynchronous programming: the partners divide tasks and work at different
times, relying on revision control to merge their work. In this model, one typ-
ically ensures that the project always compiles and runs before committing
to avoid “breaking the build” and slowing down the partner.

You’ll need to experiment with these throughout the semester to find which
works best for you. It will probably vary depending on who your partner is and
what the project is. This week I ask that you mostly work in a pure pair pro-
gramming style. The project is designed to have two people actively collaborating
on each of the task, and to have you progress through the specification in order.

You may switch to the other modes for the heightfield scene creation task at the
end. If you do so, review the Subversion best practices in the Tools handout from
the first lab. In particular, always:

1. update and test the build before you start working,

2. ensure that the build is functioning correctly before you commit, and

3. send your partner e-mail whenever you commit code.
Tip: Put effort into cre-

ating an effective work-

ing relationship. Beyond

the current project, your

reputation with your peers

and your class participa-

tion grade are influenced

by how you interact with

your partner.

The first practice helps you distinguish whether you or your partner broke something–
if it was your partner, you know to look at the revision control history or code that
he or she wrote rather than the code you added. The second helps avoid breaking
the build on your partner. You may need to temporarily disable code that is not
compiling if you are out of time but can’t fix a problem. The third ensures that your
partner knows when new updates are available, and what will happen if he or she
does update.

http://graphics.cs.williams.edu/courses/cs371 7

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

When pair programming, it is important that both partners share responsibility
for the actions on the computer even though only one is actively typing. The non-
typing partner should be thinking one step ahead so that you never lose momentum.
That partner should also be checking what is typed for bugs as it goes in, and can
use a second computer to reference documentation just before it is needed. It is a
good idea to take turns typing, swapping after crossing milestones (e.g., whenever
you check in to Subversion). I find that it takes more effort to be the non-typing
partner, because more of the thinking onus is on you. You should use the same
practices while debugging.

Working with a partner, especially a new partner, slows down your programming
rate. That’s because you spend more time thinking and communicating. However,
when you get the workflow under control your net development time should de-
crease. That’s because the extra time invested in programming saves significant
debugging time, since you tend to generate more correct programs. As soon as you
learn your partner assignment, schedule a few pair programming sessions. I rec-
ommend pre-scheduling five hours of time outside of class during the week. You
might not need that much time. But it is easier to cancel a meeting than it is to
schedule one at the last minute.

Now that you’re moving code between projects and between partners, correct and
useful documentation is very important. Remember; you’re not programming for
the computer, and you’re not programming for me–you’re programming for your
future self and partner. They’ll be a lot more critical than I am, although perhaps
not so vocal.

The weakest form of documentation is a comment. Strong interfaces, clear
method names and helper methods, clear variable names, useful auxiliary classes,
and consistent use of design patterns are much better forms of documentation. I
view comments as the thing you add to poorly written code to help understand it. If
the code is good enough, it doesn’t need comments because it is obvious what the
interface is and how the implementation works.

Coding conventions become important when bringing together code from many
sources. These conventions include the use of capitalization and whitespace. It
doesn’t matter what conventions you use so long as they are consistent across the
codebase. Since we’ll be switching partners frequently, it helps if everyone follows
the same coding conventions. So I recommend that you follow the G3D coding
conventions, which are largely the official Java conventions adapted to C++ syntax.
You have the G3D source code available to you, which abundantly demonstrates the
coding conventions. If your code is self-inconsistent, you will lose clarity points on
the evaluation. If it is consistent but different from the G3D conventions you will
not lose points for that.

5.2 Getting Started
Start by exporting the previous week’s code to new Subversion project. See the
Tools handout from last week or refer to the Subversion manual [Collins-Sussman
et al. 2008] for information about how to do this. Remember that you can use
anybody’s code from the previous week with their permission, so if you aren’t
happy with your own project as a starting point, just ask around.

http://graphics.cs.williams.edu/courses/cs371 8

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

The Subversion command to check out your project this week is:

svn co svn://graphics-svn.cs.williams.edu/1-Meshes/meshes-<group>

Where you should replace <group> with the name of your group, which you
should have received Monday night by e-mail.

Most of G3D’s GUI routines have you pass a pointer (yes, the dangerous thing I
told you to be careful with last week!) to the control so that it can synchronize with
a value in your program. For a checkbox, you naturally want a pointer to a bool
variable. G3D::GApp automatically creates a GUI window called debugWindow

for you, and a pointer to a G3D::GuiPane called debugPane as another G3D::GApp
member variable. Look at the methods on G3D::GuiPane in the documentation
to see how to create a checkbox.

5.3 Writing Files
There are many ways of writing text files in C++ using G3D. These include the <<
operator, G3D::Any::saveG3D::Any, G3D::TextOutput, and fprintf. In
general, fprintf is the worst way of doing this because it provides few features
and is easy to make mistakes with. However, you’re writing really simple files this
week and you already know how its cousin, printf, works, so there are certain
advantages to fprintf right now. Here’s an example of writing to a file:

// "wt" means "write text"
// fopen is a C function, so you have to pass C-strings to it
FILE* f = fopen("myfile.txt", "wt");

// if f is NULL, we don’t have permission to open
// the file or the path is bad
debugAssert(f != NULL);

std::string s = "Hi there!";

fprintf(f, "A constant string\n");
fprintf(f, "Some numbers: %d %d\n", 1, 2);
fprintf(f, "A variable string: %s\n\n", s.c_str());

// Close the file
fclose(f);
f = NULL;

5.4 File Formats
The Geomview OFF file format is documented in the Geomview Manual [Geom-
etry Techonologies 2010] under “input formats”. The file format specification is
ambiguous and a little bit confusing. That’s typical–learning to work with such
specifications is part of the point of this project. Your cube and cylinder files do
not need texture coordinates, normals, or homogenous vertices. None of your files
need vertex colors or face colors.

The .scn.any file format has two extensions because it has two layers of struc-
ture. G3D::Any is a class that simplifies writing simple, structured data to disk and

http://graphics.cs.williams.edu/courses/cs371 9

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

reading it back. By convention, files containing G3D::Any data end in .any so that
text editors can detect them and so that you can set up appropriate file associations.

The Scene class that you imported from the starter project happens to use a
particular structure of G3D::Any for its data files. You can change it it you’d like.
The Scene class has minimal documentation. That means that you need to figure
out the file format from reading the implementation code and from looking at the
crates.scn.any file from the starter project. Fortunately, it is fairly friendly,
and most of it is designed to mimic G3D classes that go by similar names.

The crates.scn.any file contains some animation data that we won’t need
yet, and has more complicated materials than we require. Position objects using
data like

object = model(CFrame::fromXYZYPRDegrees(x,y,z,yaw,pitch,roll))

and set materials with data like

materialOverride = Material::Specification {
lambertian = Color3(1, 0, 0)

}

or

materialOverride = Color3(1, 0, 0)

Both of these code snippets should look familiar, since they closely match the hard-
coded constants you set in the previous project.

5.5 Printing std::string

printf is a C function, and std::string is a C++ class, so they aren’t directly
compatible. To convert a std::string to a C string, use std::string::c_str(),
e.g.,

std::string h = "Hello";
debugPrintf("%s\n", h.c_str());

5.6 Making 3D Models
Use large comments with “ASCII art” diagrams to help explain your indexing
schemes in source code and in manually-created data files. Remember that you
can also embed images in the generated documentation and report.

Program in small, modular pieces. That leads to reuseable code that is easier
to debug and maintain. When generating a data file, I find that this advice is best
applied by separating the process of generating the data structure in memory from
the process of serializing that data structure to disk. Although this week’s data
structure and file format are similar, this approach is especially helpful when the
data structure that you need to build the model is different from the one that you
use to encode the completed model.

5.6.1 Cube

When working on the cube, add one face at a time to simplify debugging. Make
lots of pictures in the data file and in your notebook–this stuff is hard to visualize
entirely in your head.

http://graphics.cs.williams.edu/courses/cs371 10

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

5.6.2 Cylinder

When working on the cylinder, generate the top disk first and debug that procedure.
Then generate the bottom disk. Finally, fill in the sides. Note that a cylinder with
four slices is a cube, so the process of writing this procedure is one of generalizing
from data you encoded by hand. There are several ways to tessellate a cylinder, so
yours might not look exactly like the one shown in Figure 7.

5.6.3 Heightfield
Tip: Things get really

confusing in the two for

loops if you name your

Image1 variable “height.”

Consider “elevation.”

Photoshop’s Render Clouds and Difference Clouds filters generate terrain-like height-
fields. You can also find heightfields online. You don’t have to make a terrain–
heightfields can represent car bodies, buildings, a person sleeping under a sheet,
and lots of other shapes with some creativity. Remember that in your scene you
can rotate the heightfield, so the “up” direction can change.

G3D contains several classes for loading grayscale images, including G3D::Image1,
G3D::Image1uint8G3D::GImage, and G3D::Texture. I recommend G3D::Image1
for creating the heightfield. Think about why are there so many image classes in
the library, and why I recommend this one for this application.

When writing your heightfield, watch out for integer division:

int a = 10;
int b = 7;
float c = a / b; // c == 0.0f
float d = float(a) / b; // d == 0.7f

You’re going to face a number of places where you need to decide between us-
ing width and (width - 1) because a grid has one fewer cell than line in each
dimension. Try drawing out a 2 × 2 heightfield grid and working out the indexing
and texture coordinates by hand on that to get these right.

5.7 Disabling Code
There are three ways of disabling debugging code in your program: block com-
ments, run-time branches, and compile-time branches. Block comments are conve-
nient for quickly disabling code, e.g.,

/*
debugPrintf("%d %d %d\n", v.x, v.y, v.z);

*/

There’s no way of easily enabling the code in block comments distributed through-
out a program and they don’t nest properly, so they are inferior to other methods
and your final submission should not include them.

Run-time branches allow you to toggle debugging code at run time, e.g.,

if (m_debugVertexPositions) {
debugPrintf("%d %d %d\n", v.x, v.y, v.z);

}

You can easily map the conditionals of run-time branches to GUI controls. Run-
time branches ensure that the code is compiled, even if it is not ever run. That means
that the disabled code is less likely to become out of date over time. They do incur a
small overhead, so sometimes they are not appropriate for an inner loop. However,

http://graphics.cs.williams.edu/courses/cs371 11

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

Figure 4: Heightfield at sunset. You can simulate the atmospheric perspective by
painting a gradient across the heightfield’s texture map in Photoshop.

since our goal is not a shipping product but a reliable code base for experiments,
performance considerations should be secondary to program maintenance and ease
of use at this point.

Preprocessor commands for compile-time branches look like this:

#if DEBUG_VERTEX_POSITIONS
debugPrintf("%d %d %d\n", v.x, v.y, v.z);

#endif

They require recompilation of your program to toggle, however they ensure that
there is no run-time cost for disabled debugging code. They also allow you to
disable code in syntactically incomplete ways, which is occasionally very useful, if
confusing.

5.8 Texture Mapping
Instead of assigning a single “color” to a surface, we can model color variations
by stretching an image across a surface. This process is called texture mapping
and in this context the image is a texture. In English, “texture” usually means the
feel and bumpiness of a surface, which is called a “normal map” or “bump map” in
computer graphics.

We need some way of specifying the mapping between points in the image and
locations on the surface of the object. A common way to do this is to tie specific
locations in the image to vertices. The in-between areas of surface are then filled
by linearly stretching the in-between areas of texture across them. A texture coor-
dinate is a 2D point, typically with each element on [0, 1], that specifies a location
in the image. By assigning a texture coordinate to each vertex we establish the
mapping. By convention, texture coordinates are often referred to by the variables
(u, v) to distinguish them from points in screen space.

http://graphics.cs.williams.edu/courses/cs371 12

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

Figure 5: It takes about an hour of texturing work in Photoshop to paint a terrain
like this.

Sometimes we need two texture coordinates at the same location on the surface.
For example, we might want to texture map a cube so that the left edge of one side
aligns with the right edge of its neighbor for a tiling texture. To do this, one creates
two vertices with the same (x, y, z) but different (u, v). Fortunately, you don’t have
to do that for the heightfield in this project and you don’t need texture coordinates
for your other models.

5.9 Texturing
If you’re inspired by the artistic side of this project, here are some tricks for making
terrain. This is for your information only–you won’t receive extra points if you go
to this length on the heightfield part of the project, and it certainly isn’t required.
Knowing how to use Photoshop is a useful skill as a programmer even if you aren’t
making pictures. The filters and commands are handy for adjusting large amounts
of data that happens to be encoded in an image format, like our heightfield.

It took me about an hour to create the terrain in Figure 5. I first generated a
128× 128 grayscale Cloud field with a Photoshop filter. I ran the filter a few times
until I liked the pattern it made. I used the Levels command to stretch the histogram
to fill the entire value range.

I used the Curves command to draw a profile of the terrain. I flattened the first
10% of the value range to create the large “water” regions, made the next 50% of
the value range slope up linearly, and then steeply curved the mountainous areas
and rounded their top.

Figure 6: 2D terrain
texture map in progress
in Photoshop.

Figure 7: In-progress
texture map viewed in
3D.

I saved the grayscale to produce the heightfield and then resized it to 8192×8192
to make the color texture. Using a single texture for the entire world is the basic
idea behind John Carmack’s megatexture [Dornan 2006], which you might have
heard about in the popular gaming press. It is easy to do this for a heightfield that
fits entirely in memory. If the heightfield were bigger we’d need some kind of page
table to manage multiple textures, and if we were working with an arbitrary mesh
we’d need a more sophisticated texture parameterization.

I used the magic wand tool to select all of the water. I used the clone tool to paint

http://graphics.cs.williams.edu/courses/cs371 13

http://graphics.cs.williams.edu/courses/cs371


CS371 2010 | PROJECT 1: MESHES

a tiny swatch of water texture I found on Google Images as a semi-unique texture
over all water areas. I then repeated this for other elevations with different textures,
periodically checking how it looked in 3D.

Finally, I gamma adjusted the entire texture so that it appeared darker in Photo-
shop. I could have instead altered the Material::Specification in the corre-
sponding Scene file to use a gamma factor on load.

From the G3D data documentation I selected a natural sky image for use as the
skybox, and placed an appropriate light source to act as the sun. The result is clearly
“programmer art”–it is ugly and amateur compared to high quality 3D art, but it is
pretty enough that we can tell this technique would yield reasonable terrain in the
hands of a talented texture artist.

One of the problems with my terrain texture is that it only varies based on eleva-
tion. If you look at real terrain, you’ll notice that vegetation and rockiness strongly
correlate with slope, not just elevation. Making flatter parts have more vegetation
and steeper parts more rocky would improve the overall appearance. You can prob-
ably imagine use tricks in Photoshop to obtain the derivative of the heightfield, or
even writing a program to automatically texture a terrain. The latter would make a
nice final project!

References
COLLINS-SUSSMAN, B., FITZPATRICK, B. W., AND PILATO, C. M. 2008. Subversion complete reference. In

Version Control with Subversion. O’Reilly, ch. 9. http://svnbook.red-bean.com/en/1.5/svn.
ref.html. 8

DORNAN, C. 2006. Q&A with John Carmack. Gamer Within (May). http://www.team5150.com/

˜andrew/carmack/johnc_interview_2006_MegaTexture_QandA.html. 13

GEOMETRY TECHONOLOGIES, 2010. Geomview manual. http://www.geomview.org/docs/html/
index.html. 2, 9

http://graphics.cs.williams.edu/courses/cs371 14

http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://svnbook.red-bean.com/en/1.5/svn.ref.html
http://www.team5150.com/~andrew/carmack/johnc_interview_2006_MegaTexture_QandA.html
http://www.team5150.com/~andrew/carmack/johnc_interview_2006_MegaTexture_QandA.html
http://www.geomview.org/docs/html/index.html
http://www.geomview.org/docs/html/index.html
http://graphics.cs.williams.edu/courses/cs371


Index

.scn.any, 2, 9

ASCII art, 10

bool, 9

checkbox, 3
checkpoint, 4
coding conventions, 8
comment, 11
Cornell Box, 4, 5
cube, 5
cylinder, 4, 5, 11

data-driven programming, 1
debugging, 8
debugPane, 9
Doxygen, 5

fprintf, 9

G3D::Any, 9
G3D::GApp, 9
G3D::GuiPane, 9
G3D::Image1, 11
G3D::TextOutput, 9
gamma, 14
GUI, 5, 9

hard-coded, 2
heightfield, 1, 4, 5

indexed triangle mesh, 1

LaTeX, 2, 5

megatexture, 13

OFF, 2, 4, 9

pair programming, 7
preprocessor, 11

report, 5

Scene, 5, 9
scene, 4
starter, 4, 9
Subversion export, 8
surface, 1

teamwork, 7
texture, 12
texture coordinate, 12
texture mapping, 12

wireframe, 3


	Introduction
	Overview
	Educational Goals
	Schedule

	Rules/Honor Code
	Specification
	Checkpoint (Thursday 1:00 pm)
	Report

	Evaluation Metrics
	Implementation Advice
	Teamwork
	Getting Started
	Writing Files
	File Formats
	Printing std::string
	Making 3D Models
	Cube
	Cylinder
	Heightfield

	Disabling Code
	Texture Mapping
	Texturing


